The 991st meeting of the Club was held on Monday 17 September 2018 in the upstairs room at the Barley Mow, 104 Horseferry Road, London SW1P 2EE. Twenty-one people were present: Miss H. Baker, Mr P. J. Belman, Mr R. Baker, Mr T. Brown, Mr S. Chapman, Mr G. Davidson, Mr G. de Silva, Mr D. J. Fisher, Ms R. Gleave, Dr C. F. Mann, Dr H. Lloyd (Speaker), Mr D. J. Montier, Mrs M. Montier, Dr S. Pringle, Mr R. Pritchett, Dr R. Prŷs-Jones, Dr P. Rudge, Mr S. A. H. Statham, Mr C. W. R. Storey (Chairman), Mr S. Turvey, Ms J. White.

Huw Lloyd gave a talk entitled *Crabs, cranes, and cuckoos: developing bird conservation science in China*. China is making tremendous efforts to reach out to the international bird conservation community to help develop its next generation of bird conservationists. Since 2010, Huw Lloyd and colleagues have been working with Chinese universities and the China Ornithological Society, helping to develop these young scientists. These research collaborations have shed new light on the ecology of migratory Red-crowned Cranes *Grus japonensis*, revealing how they respond to the pressures of habitat change, and what sustains their wintering population. They have also discovered how some of China’s threatened bird populations are likely to respond to climate change, and how vocal individuality in populations of male Common Cuckoos *Cuculus canorus* can be used as a non-invasive marker for monitoring their population.

OBITUARY

Patricia (‘Paddy’) A. Cottam (née Lawford), 1932–2018

Mrs ‘Paddy’ Cottam, who was born on 5 February 1932 and sadly died on 13 April 2018, worked as a curatorial Assistant in the British Museum (Natural History) (BMNH) Bird Room for six and a half years, from 1 November 1950 until 30 April 1957. The daughter of Commander Lawford, who worked in the Admiralty’s Hydrographic Department in London, she grew up in London’s suburbia, with periods in Dorset and Bath, in the latter of which she was a pupil at the Royal High School. Biology was her favourite subject and she attained a degree in Zoology from Chelsea Polytechnic through attending night school there. Following her initial curatorial apprenticeship after joining BMNH, early in 1952 she and a fellow young Assistant, Graham Cowles, were assigned to the avian osteology collection, which had just been moved into new accommodation in the museum basement. Partly due to the intervention of World War II, little curatorial work had been undertaken on bird skeletons for c.20 years, and the main task they initially set themselves was to prepare a separate avian osteology register, involving the extraction of relevant data from old registers as well as much new registering of backlogged specimens. On completion of this in 1953, a systematic re-curation of the collection was begun, which continued through Paddy’s remaining years of service.

During 1954, Paddy was involved in her first scientific publication, when she assisted the Head of the Bird Room, J. D. Macdonald, to compile records of birds observed at sea during *HMS Challenger’s* recent Pacific Ocean cruise (Macdonald & Lawford 1954). By 1955, the Department’s Annual Report notes that ‘Miss P. A. Lawford has carried out osteological research on the Pelecaniform characters of the Shoe-bill Stork, *Balaeniceps rex*, presumably arising out of the re-curation of storks and their allies on which she had been involved in the previous year. The following year’s report noted that she had not only completed this research but begun further investigations into the osteology of the Anhimidae and Anatidae, although the latter never developed further due to her marriage to husband David on 6 October 1956 and subsequent departure from BMNH in spring 1957, when she moved to Lincoln.

Paddy’s *Balaeniceps* publication (Cottam 1957) is striking for more than one reason. Firstly, as a young female Assistant, she had nevertheless impressed her superiors sufficiently to be supported not only by the Head of the Bird Room, but also by the Zoology Department Keeper and Deputy Keeper (acknowledged in the paper), in undertaking a major piece of research and publishing it as sole author. Secondly, the research itself was quite remarkably prescient and retains a continuing importance. Although Gould had suggested a possible Pelecaniform relationship for *Balaeniceps rex* when he described the species in the early 1850s, consensus opinion for the following 100 years had placed it close to the storks. Paddy’s osteological conclusions have since been largely supported by morphological and molecular research that points to a close relationship between pelicans, the Shoebill and Hamerkop *Scopus umbretta*, the last-named not included...
in her study. The importance of Paddy’s work was immediately recognised, as shown by a letter of August 1957 from the eminent anatomist Prof. A. J. E. Cave, St Bart’s Hospital, to J. D. Macdonald, in which he commented ‘...this is an excellent and gratifying piece of work ... [which] demonstrates what good work can be effected by the unbiased observant eye and a modicum of common sense ... Your lady has produced a little classic which will [long] retain its significance in ‘the literature’.

Paddy loved working in BMNH and clearly had a close and easy-going friendship with her Bird Room colleagues, notably Graham Cowles, who remained working on birds in the museum until his retirement in 1991 and continued to correspond with her up to her death. This included her relationship with J. D. Macdonald, as revealed in letters they exchanged during the period immediately following her retirement. In mid-May 1957, Paddy returned to London to give a lecture at the Zoological Society on her Balaeniceps research. Writing to Macdonald prior to this, she asked him to please ‘tell Graham that it will be much more frightening than getting married’, to which Macdonald replied that she need have no worries as not only had she something really interesting to put across but, moreover, the lecture would soon be over and done whereas the marriage was only just beginning!

In Lincoln, she endeavoured unsuccessfully to find work in a local museum, but ended up working at Fisons until the birth of her first daughter in 1959. Following periods in Hitchin, where her second daughter was born, and Brentwood, the family moved long term to Newcastle in May 1969. To her great frustration, she was again unable to obtain paid work in a natural history museum and had to retrain as a secretary, working in this role in a hotel, a garage and, for many years, a school. However, she also began volunteering in the Hancock Museum (now the Great North Museum: Hancock), Newcastle, initially on a few afternoons but, after retirement, for five mornings a week. Her association with the Hancock, where she identified, catalogued and labelled their important osteology collection, lasted approaching 30 years and, in the words of her family, ‘saved her’! A major exhibition on ‘Bones’ staged by the Hancock in 2017 was in important part dependent on her many prior years of work, and while volunteering there she published her only other scientific paper of which I am aware (Cottam 1991), as well as providing input to work published by others on whale bones. She is remembered by a then senior staff member there, Alec Coles, as someone who selflessly gave her heart, soul and much time to a cause she passionately believed in.

I am grateful to Fiona Waugh, daughter of Paddy, and to Alec Coles, Graham Cowles, Dan Gordon and Effie Warr, former colleagues of Paddy, for information.

References:

Robert Prŷs-Jones

I am grateful to the following, who have reviewed manuscripts submitted to the Bulletin during the last year (those who refereed more than one manuscript are denoted by an asterisk in parentheses): David Allan, Jorge Avendaño, Rob Bijlsma, Elisa Bonaccorso, Frederik Brammer, Guilherme Brito, Terry Chesser, Nigel J. Collar (*), Jo Cooper, Andrea Corso, Geoffry Davison, Andrew Elliott, Brian Finch (*), Juan F. Freile, Hector Gómez de Silva, Harold F. Greeney, Hein van Grouw (*), Steve N. G. Howell (*), Julian P. Hume, Nigel Hunter, Morton L. Isler, Ron Johnstone, Niels Krabbe, Alex Lees (*), Wayne Longmore (*), Clive F. Mann, David Manry, Daniel Mennil, Israel Moreno-Contreras, Pat Morris, José Fernando Pacheco (*), Robert J. Payne, Vitor Piacentini, Tony Prater, Robert Prŷs-Jones (*), Paulo C. Pulgarin, Peter Pyle, Joel Ralston, Frank Rheindt, Dominic Rollinson, Roger Safford, Richard Schodde (*), Thomas S. Schulenberg, Christopher J. Sharpe (*), Frank D. Steinheimer (*), Fernando Costa Straube, Michael Tarburton, Till Töpfer, Don Turner, Andrew Vallely, George Wallace, David R. Wells (*), Kevin J. Zimmer (*) and Kristof Zyskowski.—THE HON. EDITOR

BOC MEETINGS
See also BOC website: http://www.boc-online.org

Evening meetings are in an upstairs room at The Barley Mow, 104 Horseferry Road, Westminster, London SW1P 2EE. The nearest Tube stations are Victoria and St James’s Park; and the 507 bus, which runs from Victoria to Waterloo, stops nearby. For maps, see http://www.markettaverns.co.uk/the_barley_mow.html or ask the Chairman for directions.
The cash bar opens at **6.00 pm** and those who wish to eat after the meeting can place an order. **The talk will start at 6.30 pm** and, with questions, will last c.1 hour.

Monday 18 March 2019—6.30 pm—Julia Day—Continental vs. island evolution of a ‘great speciator’: resolving the Zosterops taxonomic conundrum.

Abstract: Different environments, such as islands and continents, have had profound effects on how biodiversity is shaped. While evolutionary processes are predicted to follow different patterns in island and mainland radiations, the extent to which these geographical contexts influence evolutionary trajectories remains poorly understood. This is in part because few studies have focused on species-rich groups of highly dispersive animals, which can colonise both continents and extensive archipelagos over comparable timeframes. In this talk I will focus on how resolving the evolutionary relationships of white-eyes (*Zosterops*)—lauded as a ‘great speciator’—in Africa, Arabia and associated islands, combined with morphological data, has allowed us to better understand evolutionary processes across these different geographic landscapes. I will also discuss how museum collections and genetic data have aided in the task of deciphering the tricky and sometimes infuriating taxonomy of this highly cryptic group, leading to a likely substantial increase in mainland species.

Biography: Julia Day is Associate Professor at University College London and has developed a research programme in evolutionary and, more recently, ecological research. She mainly works on species-rich groups of African fishes but, being a birder, couldn’t resist the challenge of working on a notoriously difficult-to-identify avian group.

Friends of the BOC

The BOC has from 2017 become an online organisation without a paying membership, but instead one that aspires to a supportive network of Friends who share its vision of ornithology—see: http://boc-online.org/. Anyone wishing to become a Friend of the BOC and support its development should pay UK£25.00 by standing order or online payment to the BOC bank account:

Barclays Bank, 16 High Street, Holt, NR25 6BQ, Norfolk
Sort Code: 20-45-45
Account number: 53092003
Account name: The British Ornithologists’ Club

Friends receive regular updates about Club events and are also eligible for discounts on the Club’s Occasional Publications. It would assist our Treasurer, Richard Malin (e-mail: rmalin21@gmail.com), if you would kindly inform him if you intend becoming a Friend of the BOC.

The Bulletin and other BOC publications

From volume 137 (2017), the *Bulletin* of the BOC has become an online journal, published quarterly, that is available to all readers without charge. Furthermore, it does not levy any publication charges (including for colour plates) on authors of papers and has a median publication time from receipt to publication of six months. Prospective authors are invited to contact the *Bulletin* editor, Guy Kirwan (GMKirwan@aol.com), to discuss future submissions or look at http://boc-online.org/bulletin/bulletin-contributions. Back numbers up to volume 132 (2012) are available via the Biodiversity Heritage Library website: www.biodiversitylibrary.org/bibliography/46639/#/summary; vols. 132–136 are available on the BOC website: http://boc-online.org/

BOC Occasional Publications are available from the BOC Office or online at info@boc-online.org. Future BOC-published checklists will be available from NHBS and as advised on the BOC website. As its online repository, the BOC uses the British Library Online Archive (in accordance with IZCN 1999, Art. 8.5.3.1).
History of the Scarlet Ibis *Eudocimus ruber* in south and south-east Brazil

by Henrique Chupil & Emygdio Leite de Araujo Monteiro-Filho

Received 9 March 2018; revised 13 August 2018; published 14 December 2018

Summary.—In Brazil Scarlet Ibis *Eudocimus ruber* occurs mainly in the north, south-east and south. During the 1900s, there was a significant reduction in the number of records in the latter two regions of the country, but this began to change in the early 1980s, when numbers of Scarlet Ibis gradually started to increase over the years. We contextualise the history of the species in south and south-east Brazil, and discuss the causes for its apparent disappearance and reappearance in these regions. We believe that anthropogenic factors, coupled with the species’ ecology, were responsible for the reduction and subsequent resurgence of Scarlet Ibis.

Scarlet Ibis *Eudocimus ruber* is one of the most emblematic birds in the Americas, occurring across northern and eastern South America, from northern Colombia to Trinidad, the Guianas and coastal Brazil, with small outlying populations in Panama and Ecuador (Hancock *et al.* 1992). In Brazil, there are two disjunct populations: one in the north, in the states of Pará, Amapá and Maranhão; and the other in the south, in São Paulo, Paraná and Santa Catarina (Sick 1997).

Its occurrence in Brazil was first mentioned as long ago as the 16th century, with reference being made to the use of the species’ feathers by indigenous craftsmen in what is now the state of São Paulo (Staden 1557), while later in the second half of the 16th century the Jesuit Fernão Cardim (Cardim 1925) and Portuguese historian and chronicler Pero de Magalhães Gândavo (Gândavo 1576) both referred to the Scarlet Ibis, especially its striking plumage.

Subsequently, in Santa Catarina the first reports date from 1712 and 1763, representing the southernmost historical records (Haro 1990). In Paraná, according to Straube (2005), the first ‘mention’ of Scarlet Ibis dates from 1653—in an illustration of Paranaguá Bay by José Teixeira Albermás II. Thereafter, more specific references to the species’ occurrence in the state came from Johann Natterer in 1820, on the basis of the specimens that he collected and later deposited in Vienna (Naturhistorisches Museum Wien) and the reports of Augustin Saint-Hilaire between 1820 and 1855, also in Paranaguá Bay, near the mouth of Nhundiaquara River and in the environs of Guaratuba (Straube 2012).

Further historical records of Scarlet Ibis in this region of Brazil were made in the early 20th century, by A. R. Martins, on the coast of Paraná (Straube 2015), and by the engineer and naturalist R. Krone, around Iguape (on the south coast of São Paulo state) during the rainy season (Olmos & Silva e Silva 2003). However, with respect to Santa Catarina, by the time Naka & Rodrigues (2000) discussed the species, they believed it to have been extinct in the state for c.150 years.

Thereafter, in the 20th century, published data suggested that only a very small population was present in south-east Brazil, based on the isolated records available (Lago-Paiva 1994, Teixeira & Best 1981). For example, in 1961 when an individual was collected at São Vicente, in coastal São Paulo, it was considered the first record in south-east Brazil following decades of absence (Lago-Paiva 1994). For Paraná, there was only the report by
P. Scherer-Neto, from 1977, involving three individuals in the municipality of Paranaguá (Teixeira & Best 1981).

Only in the early 1980s did this start to change, when Scarlet Ibis was observed again, initially around Santos (Rio Mourão) on the coast of São Paulo (Silva-Silva 2007; Fig. 1) and in 1989 nesting was confirmed in the municipality of Cubatão (Marcondes-Machado & Monteiro-Filho 1990). The population increased gradually and, in 1998, 385 individuals were estimated at the Santos mangroves (Olmos & Silva-Silva 2001). In the south of the same state, the first individuals and evidence of breeding occurred in Iguape and northern Ilha Comprida in the early 1990s (Bokermann & Guix 1990, Paludo et al. 2004, 2005). In 2006, the first individual was observed at Cananéia, with Roseate Spoonbills Platalea ajaja (ELAM-F pers. obs.). The first flocks were seen in the following year, and the species rapidly became more frequent. In 2007, of the 15 species recorded monthly in the São Paulo Bagre, Cananéia, Scarlet Ibis was the third most abundant (Coelho 2009). In 2009, 971 were estimated foraging in five areas around Cananéia and Ilha Comprida (Barbieri 2009), while during 2011 c.1,000 individuals were counted in the channel (Mar de Dentro) between Cananéia and Ilha Comprida (Noguchi 2011). Since 2014, a new colony has become established at the south end of Ilha do Cardoso and, in 2015, we estimated 1,000 birds were breeding there (HC & ELAM-F pers. obs.).

Paralleling the increase in records on the south coast of São Paulo, several birds were also observed in Paraná, in mangroves of the Paranaguá estuarine complex, where the species became more frequent from 2009 (Krul et al. 2009, Krul 2011). Estimates at different points in the Paranaguá estuarine complex produced a max. 225 individuals at one of the study sites between October 2012 and September 2013 (Vigário 2014). In November 2011, the first birds were observed on the north coast of Santa Catarina, with a breeding colony in Babitonga Bay (Fink 2013, Grose 2016).
The history of Scarlet Ibis around Cananéia and elsewhere in São Paulo, Paraná and Santa Catarina leads us to speculate as to the factors responsible for the paucity of records prior to the 1980s. Anthropogenic factors, such as degradation and reduction of mangroves in these southern states, affecting its foraging and breeding areas (Hass 1996, Olmos 2000), hunting for its beautiful plumage (which was historically coveted by both indigenous and immigrant European peoples) and egg collection (Lago-Paiva 1994, Rodrigues 1995, Hass et al. 1999) are generally cited as being responsible. It is also noteworthy that during the first half of the 20th century there were many fewer naturalists and researchers, which could explain the small number of records of Scarlet Ibis. However, even reports by resident observers were scarce, which is unexpected given that the species is unmistakable and obvious, as evidenced recently by local people in the Cananéia region.

Based on this, we consider the species vulnerable to anthropogenic activities. However, its current range includes colonies and frequent records in urban environments that are more or less disturbed, such as Ilha Comprida, Iguape, Babitonga Bay, Cubatão and Cananéia. In the latter, the species is periodically observed foraging beside a road well used by people and vehicles (plus boats on the river), and does not appear to be disturbed by human presence. With respect to hunting and egg collection, our conversations with local people in Cananéia and on Ilha do Cardoso have revealed no consumption of Scarlet Ibis eggs, nor any interest in hunting the species for its feathers or keeping it in captivity, neither now nor in past decades.

Therefore, are anthropogenic factors alone responsible for the species’ apparent temporary local extinction on the southern Brazilian coast? Perhaps it would be more pertinent to believe that anthropogenic activities could have caused a population decline, but not extinction, yet leading to individuals or small groups dispersing to more remote areas along rivers and in mangroves, in search of safe foraging and breeding sites. Supporting this hypothesis is that as long ago as 1781, Martim Lopes Saldanha issued an edict for the protection of Scarlet Ibis, in which he stated that the species would almost certainly become extinct at some localities in Paraná, with apparent dispersion to more isolated islands (Straube 2011). In addition, it is important to highlight an important issue often overlooked when seeking to understand the dynamics of species, namely that periods of lesser abundance or greater dispersal, in the present case aggravated by anthropogenic factors, might be normal facets of their ecology.

An example of fluctuations in the numbers of Scarlet Ibis over a short period of time was obtained during monitoring of the breeding colony at the south end of Ilha do Cardoso, where approximately 1,000 birds bred in 2015 / 16, but just 300 in 2016 / 17. Concerning dispersal, it is interesting to mention the variation in numbers of Scarlet Ibis recorded during our twice-weekly boat-based surveys of the channel separating Ilha do Cardoso from Ilha de Cananéia (São Paulo) and Ilha do Superagui (Paraná) since 2014. On several occasions we covered the 46-km transect without observing any birds, whereas on others we counted >300. Apparently, the birds tends to be more visible at low tide and to disperse further during the non-breeding season. However, under the same tidal regime, at any season there is still marked variation in the numbers observed.

Additionally, the hypothesis of greater dispersal prior to the 1980s contrasts with the fact that Scarlet Ibis is generally conspicuous and unlikely to go unnoticed. However, again our regular surveys found that the species can be initially overlooked during cursory observations, but that careful checking would reveal small groups or lone individuals inside dense mangroves, where they might easily pass unnoticed if no effort was made to partially penetrate the habitat. Thus, when the species avoids more open areas it is much less conspicuous.
However, if the Scarlet Ibis really did become locally extinct as a breeder, from where does the current population in the states of São Paulo, Paraná and northern Santa Catarina originate? Genetic analyses comparing the population at Cubatão with those in northern Brazil demonstrated a close relationship, suggesting either that southern birds derived from the north or that the species at one time was found virtually throughout the Brazilian littoral (Gonçalves et al. 2010).

Olmos (2003) reported the introduction of 19 pairs of Scarlet Ibis from the state of Maranhão to Cubatão in 1967–69, which would corroborate the first hypothesis of Gonçalves et al. (2010), i.e. that southern birds derive directly from northern Brazil. However, the release of these individuals alone seems unlikely to account for the current population in south-east Brazil. The second hypothesis presented by Gonçalves et al. (2001), namely that the species formerly occupied the entire Brazilian coast to the limit of mangrove occurrence, equally accounts for the currently disjunct populations’ close genetic similarity.

Under the current scenario, some dispersal of birds along the coast is evidenced by records from various localities, ensuring gene flow between, and reinforcing the genetic proximity of, different subpopulations in south-east Brazil (Gonçalves et al. 2010). An example of such movements was reported by Grose (2016), involving birds ringed in Babitonga Bay in November 2012, January 2013 and November 2013 that were subsequently re-sighted in Cananéia (August 2013 and May 2015) and the municipality of Praia Grande (October 2014).

Given the available information as to the history of occurrence of Scarlet Ibis and its ecological characteristics, we believe that the species previously occurred over a much greater part of the Brazilian coast with strongholds in the north and south—as already mentioned by Sick (1997)—but with some movement between areas. By and during the early 1900s, due to anthropogenic factors and the species’ ecology, the southern population was both reduced in numbers and favoured more isolated mangroves. However, during the 1980s, the population began to increase and become more obvious again. We conclude that the species’ biology may also explain its temporary apparent rarity and local extinction in parts of southern and south-east Brazil, as well as anthropogenic factors. Nevertheless, the conservation of estuaries where the birds breed and forage is essential to maintain the species’ populations, despite that Scarlet Ibis appears to some extent tolerant of human disturbance and activities.

References:

Addresses: Henrique Chupil and Emygdio Leite de Araujo Monteiro-Filho, Programa de Pós-Graduação em Zoologia, Departamento de Zoologia, Universidade Federal do Paraná, Centro Politécnico, C.P. 1901, Curitiba, Paraná, CEP 81.530-990, Brazil; and Instituto de Pesquisas Cananéia, Avenida Nina 523, Cananéia, São Paulo, CEP 11.990-000, Brazil, e-mail: hchupil@gmail.com

© 2018 The Authors; *This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.* ISSN-2513-9894 (Online)
Avifauna of a white-sand vegetation enclave in north-west Rondônia, Brazil: relevant records, body mass and morphometrics

by Edson Guilherme, Edilaine Lemes Marques & Geyse Souza Santos

Received 29 March 2018; revised 27 August 2018; published 14 December 2018

http://zoobank.org/urn:lsid:zoobank.org:pub:84EC74FE-95C0-48F7-AF97-CE8900DAEB4F

Summary.—White-sand vegetation (WSV) enclaves occur throughout Amazonia. WSV, known in Brazil as campina or campinarana, possesses peculiar floral and faunal communities, different from those in adjacent forests but with biogeographic affinities to those in similar ecosystems far distant. Recent ornithological studies of these ‘islands’ have yielded new taxa for science and enabled a better understanding of the zoogeography of many poorly known species in Amazonia. Here we report the results of an ornithological survey of a campinarana enclave in north-west Rondônia, southern Amazonian Brazil. The area was inventoried three times in 2010–12, totalling 899 net / hours and 110 hours of observations. A total of 171 bird species was identified, belonging to 44 families. Among them, at least nine species are closely associated with WSV: Green-tailed Goldenthroat Polytmus theresiae, White-fringed Antwren Formicivora grisea, Natterer’s Slaty Antshrike Thamnophilus stictocephalus, Black Manakin Xenopipo atronitens, Plain-crested Elaenia Elaenia cristata, Pale-bellied Mourner Rhytipterna immunda, Campina Flycatcher Cnemotriccus fuscatus duidae, Plush-crested Jay Cyanocorax chrysops diesingii and Red-shouldered Tanager Tachyphonus phoenicius. Approximately 8% of the species recorded are migratory, most of them austral migrants. In addition, body mass and morphometrics of 136 individuals from 55 species are presented. Our results augment ornithological knowledge in Rondônia, aid our understanding of regional zoogeography, and serve as an alert to the need to preserve a region that has suffered severe anthropogenic impacts for >100 years.

Amazonia is the largest and most diverse biome on Earth (Mittermeier et al. 2003). It has the largest extent of continuous forest in the world and harbours impressive biodiversity (Kress et al. 1998, Mittermeier et al. 2003). The biome as a whole is very heterogeneous (Terborgh & Andresen 1998, ter Steege et al. 2003). It is a mosaic of different types of ecosystems resulting from variable regional edaphic and climatic conditions (Duivenvoorden et al. 2005, Haugaasen & Peres 2006, Fine & Kembel 2011, Fine et al. 2012). Among these ecosystems are several forest types, e.g., terra firme and várzea (Terborgh & Andresen 1998), as well as some non-forest environments, e.g. the enclaves or ‘islands’ of open vegetation within forests (Anderson 1981, Fine et al. 2012, Fine & Bruna 2016, Mustin et al. 2017, Demarchi et al. 2018).

Enclaves of open vegetation are distributed discontinuously throughout Amazonia (Adeney et al. 2016). The origin of these enclaves is still being discussed—one hypothesis is a Pleistocene and Holocene provenance, when the climate in Amazonia became drier as a consequence of the last glacial maximum (Pessenda et al. 2001, Clark et al. 2009). The types of open vegetation in Amazonia are distinguished by their general physiognomy dictated by floristic composition according to the local edaphic, hydrological and climatic conditions (Adeney et al. 2016). The two main groups are savanna / cerrado (Sanaiotti et al. 1997, Silva et

Rondônia state, in south-west Amazonian Brazil, lies within an area of endemism of the same name (Silva et al. 2005, Fernandes 2013). Although rich in endemic and / or rare species (Fernandes 2013), the state has already lost >30% of its forest cover due to logging and agroforestry (Serrão et al. 1996, Piontekowski et al. 2014, Fearnside 2017). Ornithological surveys in the state have progressively increased over the last 100 years (e.g. Hellmayr 1910, Stotz et al. 1997, Boçon 1999, Kirwan & Shirihai 2007, Olmos et al. 2011, Santos et al. 2011) and, as further areas are inventoried, several new species of birds have been discovered (Lanyon et al. 1990, Whitney et al. 2013a,b,c). Despite this, the richness of bird species and their distribution in the state as a whole are poorly known and have not been subject to major review. There are still numerous gaps in our ornithological knowledge of Rondônia because many areas are yet to be surveyed. Here, we present the results of a rapid inventory of an enclave of WSV near the BR-364 and the recently implemented Jirau hydroelectric power plant in north-west Rondônia.

Methods

Study area.—The study was undertaken in an enclave of WSV and its environs called Miratinga, located along a power transmission line west of the BR-364 (between Porto...
Velho and Abunã), c.30 km from Jaci Paraná in the municipality of Porto Velho, Rondônia (09°21'38.3"S, 64°39'29.2"W; Fig. 1).

Description of the area.—The campinarana enclave is mainly covered by dense shrubs, with sparse, small trees (2–5 m tall) (Fig. 2A–C) and some *Astrocaryum acaule* and *Mauritiella armata* palms (Fig. 2C). The soil is covered by grasses (Fig. 2A–B) and, as in other WSV environments, should be of low fertility and high acidity. At the edges of the patch, in areas of sparse vegetation and where the soil is more humid, an invasive fern *Pteridium* sp. is present (Fig. 2D). Part of the campinarana has been deforested and sand is being commercially removed (Fig. 2E). In the vicinity, there are small black-water streams and at least one medium-sized pond. During the wet season, puddles form where vegetation is sparse (Fig. 1) and in the campinarana, which is surrounded by fragments of *terra firme* forest severely modified by selective logging, and open pastures (Fig. 1).

Avifaunal sampling.—Three visits were made to the area in 2010–12. The avifaunal survey covered both the campinarana and surrounding fragments of *terra firme* forest and pastures (Fig. 1). Two approaches were used to inventory the area: (a) quantitative, using mist-nets and (b) qualitative, via field observations using binoculars. The campinarana was inventoried on 2 June 2010 (60 net / hours and two hours of observation), 26 February–3 March 2011 (439 net / hours and 54 hours of observation) and 20–24 August 2012 (400 net / hours and 54 hours of observation). Individuals captured with mist-nets were weighed...
using a Pesola® scale and their wing, tarsus and total lengths were taken with a millimetre ruler. Wing, tarsus and total lengths were measured in accordance with standard reference works, see Proctor & Lynch (1993: 295–297) and Sick (1997: 91, Fig. G). Ageing and sexing were performed whenever possible. Some specimens were collected as vouchers and were prepared using standard taxidermy techniques. Specimens were collected under ICMBio / SISBIO authorisation no. 23269-1, and deposited either at the Universidade Federal do Acre (UFAC), Rio Branco, or the Museu Paraense Emílio Goeldi (MPEG), Belém. Scientific nomenclature follows that of the Brazilian Committee of Ornithological Records (Piacentini et al. 2015).

Results and Discussion

A total of 171 species from 44 families was recorded in the campinarana enclave and its environs (Table 1). Of these, 74 (43.2%) species are non-Passeriformes and 97 (56.7%) Passeriformes. Among the latter, the families Tyrannidae (26), Thraupidae (17) and Thamnophilidae (12) were richest in species (Table 1). At least nine species recorded in the study area are closely associated with campinarana: Green-tailed Goldenthroat Polytmus theresiae, White-fringed Antwren Formicicora grisea, Natterer’s Slaty Antshrike Thamnophilus stictocephalus, Black Manakin Xenopipo atronitens, Plain-crested Elaenia Elaenia cristata, Pale-bellied Mourner Rhytipterna immunda, Campina Flycatcher Cnemotriccus fuscatus duidae, Plush-crested Jay Cyanocorax chrysops diesingiii and Red-shouldered Tanager Tachyphonus phoenicus (Table 1). Two other important records included Rondônia Bushbird Clytoctantes atrogularis (Guilherme & Souza 2013) and Buff-cheeked Tody-Flycatcher Poecilotriccus senex. Approximately 8% of the species recorded are visitors, mostly austral migrants, e.g. Large Elaenia Elaenia spectabilis, Chilean Elaenia E. chilensis, Small-billed Elaenia E. parvirostris, Fork-tailed Flycatcher Tyrannus savana, Crowned Slaty Flycatcher Griseotyrannus aurantioatrocristatus, Variegated Flycatcher Empidonomus varius, Southern Scrub Flycatcher Sublegatus modestus, Vermilion Flycatcher Pyrocephalus rubinus, Fuscous Flycatcher Cnemotriccus fuscatus bimaculatus, Chivi Vireo Vireo chivi, Creamy-bellied Thrush Turdus amaurochalinus, Yellow-bellied Seedeater Sporophila nigricollis and Double-collared Seedeater S. caerulescens, while Solitary Sandpiper Tringa solitaria was the only Nearctic migrant (Table 1).

Species accounts

GREEN-TAILED GOLDENTHROAT Polytmus theresiae
Relatively common but discontinuously distributed in enclaves of open vegetation throughout Amazonia (Schuchmann 1999, Borges et al. 2001, Sanaiotti & Cintra 2001, Aleixo & Poletto 2007, Schulenberg et al. 2007, Guilherme 2012). Hellmayr (1910) reported two collected by W. Hoffmanns around Rio Preto, in the north-east of the state, and Aleixo & Poletto (2007) the presence at MPEG of one collected by J. Hidasi at Guajará-Mirim, on the border with Bolivia. Additionally, the species was photographed in the municipalities of Cabixi and Vilhena in southern Rondônia (Wikiaves 2018). On 2 June 2010, three were collected (MPEG 70938, 70939, male, 70940) and on 22–23 August 2012 we collected another five (UFAC 507, 508, 511, 522, 523). Available records of P. theresiae in Rondônia indicate that the species is locally common, but only in enclaves of cerrado, campina and campinarana.

NATTERER’S SLATY ANTSRIKE Thamnophilus stictocephalus
Previously treated as a race of a widespread Eastern Slaty Antshrike T. punctatus (Isler et al. 1997). Distributed patchily in campina and campinarana east of the Guaporé / Madeira Rivers
TABLE 1

Birds recorded in a *campinarana* (white-sand vegetation) and its environs in north-west Rondônia, Brazil. Habitat: C = *campinarana*; TF = *terra firme* forest; R = reservoirs and lakes; AO = open areas; P = pasture and man-modified areas. Record types: V = vocalisation; O = sight; S = museum specimen. Nomenclature follows Piacentini *et al.* (2015). * = white-sand specialists following Stotz *et al.* (1996) and Borges *et al.* (2015). ** = migrants *a* = austral; *n* = Nearctic.

<table>
<thead>
<tr>
<th>Family / Species</th>
<th>English name</th>
<th>Habitat</th>
<th>Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>TINAMIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crypturellus cinereus</td>
<td>Cinereous Tinamou</td>
<td>TF</td>
<td>V</td>
</tr>
<tr>
<td>Crypturellus strigulosus</td>
<td>Brazilian Tinamou</td>
<td>C</td>
<td>V</td>
</tr>
<tr>
<td>ANATIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amazonetta brasiliensis</td>
<td>Brazilian Teal</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>CRACIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penelope jacquacu</td>
<td>Spix’s Guan</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Ortalis guttata</td>
<td>Speckled Chachalaca</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>ARDEIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tigrisoma lineatum</td>
<td>Rufescent Tiger Heron</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>Bubulcus ibis</td>
<td>Cattle Egret</td>
<td>P</td>
<td>O</td>
</tr>
<tr>
<td>Ardea cocoi</td>
<td>Cocoi Heron</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>Ardea alba</td>
<td>Great Egret</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>Egretta thula</td>
<td>Snowy Egret</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>CATHARTIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cathartes aura</td>
<td>Turkey Vulture</td>
<td>OA, P</td>
<td>O</td>
</tr>
<tr>
<td>Cathartes melambrotus</td>
<td>Greater Yellow-headed Vulture</td>
<td>OA, P</td>
<td>O</td>
</tr>
<tr>
<td>Coragyps atratus</td>
<td>Black Vulture</td>
<td>OA, P</td>
<td>O</td>
</tr>
<tr>
<td>ACCIPITRIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rupornis magnirostris</td>
<td>Roadside Hawk</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Buteo nitidus</td>
<td>Grey-lined Hawk</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>RALLIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Laterallus viridis</td>
<td>Russet-crowned Crake</td>
<td>R</td>
<td>V</td>
</tr>
<tr>
<td>Laterallus melanophaius</td>
<td>Rufous-sided Crake</td>
<td>R</td>
<td>V, O</td>
</tr>
<tr>
<td>Porphyrio martinicus</td>
<td>Purple Gallinule</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>CHARADRIIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vanellus chilensis</td>
<td>Southern Lapwing</td>
<td>P</td>
<td>O</td>
</tr>
<tr>
<td>SCOLOPACIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tringa solitaria</td>
<td>Solitary Sandpiper</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>JACANIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jacana jacana</td>
<td>Wattled Jacana</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>COLUMBIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Columbina passerina</td>
<td>Common Ground Dove</td>
<td>C, P</td>
<td>S</td>
</tr>
<tr>
<td>Columbina talpacoti</td>
<td>Ruddy Ground Dove</td>
<td>C, P</td>
<td>S</td>
</tr>
<tr>
<td>Claravis pretiosa</td>
<td>Blue Ground Dove</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Patagioenas speciosa</td>
<td>Scaled Pigeon</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>Leptotila verreauxi</td>
<td>White-tipped Dove</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Geotrygon montana</td>
<td>Ruddy Quail-Dove</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Family / Species</td>
<td>English name</td>
<td>Habitat</td>
<td>Record</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>CUCULIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piaya cayana</td>
<td>Squirrel Cuckoo</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Crotophaga ani</td>
<td>Smooth-billed Ani</td>
<td>P, C</td>
<td>O</td>
</tr>
<tr>
<td>TYTONIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyto furcata</td>
<td>American Barn Owl</td>
<td>TF</td>
<td>V</td>
</tr>
<tr>
<td>STRIGIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mergus orinoides</td>
<td>Tropical Screech Owl</td>
<td>TF</td>
<td>V</td>
</tr>
<tr>
<td>Athene cunicularia</td>
<td>Burrowing Owl</td>
<td>P</td>
<td>O</td>
</tr>
<tr>
<td>CAPRIMULGIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nyctidromus nigrescens</td>
<td>Blackish Nightjar</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Nyctidromus albicollis</td>
<td>Common Pauraque</td>
<td>C, P</td>
<td>V, O</td>
</tr>
<tr>
<td>APODIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chaetura brachyura</td>
<td>Short-tailed Swift</td>
<td>OA</td>
<td>O</td>
</tr>
<tr>
<td>Panyptila cayennensis</td>
<td>Lesser Swallow-tailed Swift</td>
<td>OA</td>
<td>O</td>
</tr>
<tr>
<td>TROCHILIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phaethornis ruber</td>
<td>Reddish Hermit</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Phaethornis philippii</td>
<td>Needle-billed Hermit</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Campylopterus largipennis</td>
<td>Grey-breasted Sabrewing</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Polytmus theresiae*</td>
<td>Green-tailed Goldenthroat</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>TROGONIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trogon curucui</td>
<td>Blue-crowned Trogon</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>ALCEDINIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megaceryle torquata</td>
<td>Ringed Kingfisher</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>Chloroceryle amazona</td>
<td>Amazon Kingfisher</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>Chloroceryle americana</td>
<td>Green Kingfisher</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>Chloroceryle inda</td>
<td>Green-and-rufous Kingfisher</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>BUCCONIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bucco tamatia</td>
<td>Spotted Puffbird</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Monasa nigrifrons</td>
<td>Black-fronted Nunbird</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Chelidoptera tenebrosa</td>
<td>Swallow-winged Puffbird</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>CAPITONIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capito dayi</td>
<td>Black-girdled Barbet</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>RAMPHASTIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ramphastos tucanus</td>
<td>White-throated Toucan</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Ramphastos vitellinus</td>
<td>Channel-billed Toucan</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Pteroglossus inscriptus</td>
<td>Lettered Aracari</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Pteroglossus castanotis</td>
<td>Chestnut-eared Aracari</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>PICIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picumnus aurifrons</td>
<td>Bar-breasted Piculet</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Melanerpes cruentatus</td>
<td>Yellow-tufted Woodpecker</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Colaptes punctigula</td>
<td>Spot-breasted Woodpecker</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Dryocopus lineatus</td>
<td>Lineated Woodpecker</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Campephilus melanoleucus</td>
<td>Crimson-crested Woodpecker</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>FALCONIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daptrius ater</td>
<td>Black Caracara</td>
<td>OA</td>
<td>O, V</td>
</tr>
<tr>
<td>Family / Species</td>
<td>English name</td>
<td>Habitat</td>
<td>Record</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Ibycter americanus</td>
<td>Red-throated Caracara</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Caracara plancus</td>
<td>Southern Caracara</td>
<td>P</td>
<td>O, V</td>
</tr>
<tr>
<td>Milvago chimachima</td>
<td>Yellow-headed Caracara</td>
<td>P</td>
<td>O, V</td>
</tr>
<tr>
<td>Herpetotheres cachinnans</td>
<td>Laughing Falcon</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Falco rustigularis</td>
<td>Bat Falcon</td>
<td>TF</td>
<td>O</td>
</tr>
</tbody>
</table>

PSITTACIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>English name</th>
<th>Habitat</th>
<th>Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ara ararauna</td>
<td>Blue-and-yellow Macaw</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Ara macao</td>
<td>Scarlet Macaw</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Ara chloropterus</td>
<td>Red-and-green Macaw</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Ara severus</td>
<td>Chestnut-fronted Macaw</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Orthopsitta manilatus</td>
<td>Red-bellied Macaw</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Psitacara leucophthalnaus</td>
<td>White-eyed Parakeet</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Aratinga weddellii</td>
<td>Dusky-headed Parakeet</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Pionus menstruus</td>
<td>Blue-headed Parrot</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Amazona farinosa</td>
<td>Mealy Parrot</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Amazona ochrocephala</td>
<td>Yellow-crowned Parrot</td>
<td>TF</td>
<td>O, V</td>
</tr>
</tbody>
</table>

THAMNOPHILIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>English name</th>
<th>Habitat</th>
<th>Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pygiptila stellaris</td>
<td>Spot-winged Antshrike</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Microhopsia quixensis</td>
<td>Dot-winged Antwren</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Clytoctantes atrogularis</td>
<td>Rondônia Bushbird</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Myrmophylax atrorhax</td>
<td>Black-throated Antbird</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Formicivora grisea</td>
<td>White-fringed Antwren</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Thamnomanes saturninus</td>
<td>Saturnine Antshrike</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Thamnophilus delius</td>
<td>Barred Antshrike</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Thamnophilus schistaceus</td>
<td>Plain-winged Antshrike</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Thamnophilus stictocephalus</td>
<td>Natterer’s Slaty Antshrike</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Sciaphylax hemimelaena</td>
<td>Chestnut-tailed Antbird</td>
<td>TF</td>
<td>S, O, V</td>
</tr>
<tr>
<td>Hypocnemis ochrogya</td>
<td>Rondônia Warbling Antbird</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Willisornis pocelinitus</td>
<td>Common Scale-backed Antbird</td>
<td>TF</td>
<td>O, V</td>
</tr>
</tbody>
</table>

DENDROCOLAPTIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>English name</th>
<th>Habitat</th>
<th>Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glyphorynchus spirurus</td>
<td>Wedge-billed Woodcreeper</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Xiphorhynchus elegans</td>
<td>Elegant Woodcreeper</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Xiphorhynchus guttataoides</td>
<td>Lafresnaye’s Woodcreeper</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Dendroplex picus</td>
<td>Straight-billed Woodcreeper</td>
<td>TF</td>
<td>O, V</td>
</tr>
</tbody>
</table>

XENOPIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>English name</th>
<th>Habitat</th>
<th>Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xenops minutus</td>
<td>Plain Xenops</td>
<td>TF</td>
<td>S</td>
</tr>
</tbody>
</table>

FURNARIIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>English name</th>
<th>Habitat</th>
<th>Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berlepschia rikeri</td>
<td>Point-tailed Palmcreeper</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Furnarius leucopus</td>
<td>Pale-legged Hornero</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Anabacerthia ruficaudata</td>
<td>Rufous-tailed Foliage-gleaner</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Phylodor erythrocerum</td>
<td>Rufous-rumped Foliage-gleaner</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Synallaxis rutilans</td>
<td>Ruddy Spinetail</td>
<td>C</td>
<td>S</td>
</tr>
</tbody>
</table>

PIRIDAE

<table>
<thead>
<tr>
<th>Species</th>
<th>English name</th>
<th>Habitat</th>
<th>Record</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceratopipra rubrocippii</td>
<td>Red-headed Manakin</td>
<td>C, TF</td>
<td>S</td>
</tr>
<tr>
<td>Manacus manacus</td>
<td>White-bearded Manakin</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Family / Species</td>
<td>English name</td>
<td>Habitat</td>
<td>Record</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Machaeropterus pyrocephalus</td>
<td>Fiery-capped Manakin</td>
<td>TF, C</td>
<td>S</td>
</tr>
<tr>
<td>Xenopipo atronitens*</td>
<td>Black Manakin</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>ONYCHORHYNCHIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terenotriccus erythrurus</td>
<td>Ruddy-tailed Flycatcher</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>TITYRIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodopleura isabellae</td>
<td>White-browed Purpletuft</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Tityra semifasciata</td>
<td>Masked Tityra</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>COTINGIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Querula purpurata</td>
<td>Purple-throated Fruitcrow</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Lipaugus vociferans</td>
<td>Screaming Piha</td>
<td>TF</td>
<td>V, O</td>
</tr>
<tr>
<td>RHYNCHOCYCLIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mionectes olegineus</td>
<td>Ochre-bellied Flycatcher</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Tolmomyias flaviventris</td>
<td>Yellow-breasted Flycatcher</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Todirostrum maculatum</td>
<td>Spotted Tody-Flycatcher</td>
<td>TF, C</td>
<td>O, V</td>
</tr>
<tr>
<td>Pocelotriccus senex</td>
<td>Buff-cheeked Tody-Flycatcher</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Pocelotriccus latirostris</td>
<td>Rusty-fronted Tody-Flycatcher</td>
<td>TF</td>
<td>O, V, S</td>
</tr>
<tr>
<td>TYRANNIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camptostoma obsoletum</td>
<td>Southern Beardless Tyrannulet</td>
<td>C, TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Elaenia spectabilis***</td>
<td>Large Elaenia</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Elaenia chilensis***</td>
<td>Chilean Elaenia</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Elaenia parviostris***</td>
<td>Small-billed Elaenia</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Elaenia cristata*</td>
<td>Plain-crested Elaenia</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Myiopagis viridicata</td>
<td>Greenish Elaenia</td>
<td>C</td>
<td>O, V</td>
</tr>
<tr>
<td>Tyrannulus elatus</td>
<td>Yellow-crowned Tyrannulet</td>
<td>C, TF</td>
<td>S</td>
</tr>
<tr>
<td>Phaonopygia musina</td>
<td>Mouse-coloured Tyrannulet</td>
<td>C</td>
<td>S, V</td>
</tr>
<tr>
<td>Legatus leucophaius</td>
<td>Piratic Flycatcher</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Myiarchus ferox</td>
<td>Short-crested Flycatcher</td>
<td>C, TF</td>
<td>S, V, O</td>
</tr>
<tr>
<td>Rhytipterna immunda*</td>
<td>Pale-bellied Mourner</td>
<td>C</td>
<td>S, O</td>
</tr>
<tr>
<td>Pitangus sulphuratus</td>
<td>Great Kiskadee</td>
<td>C, TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Myiodynastes maculatus</td>
<td>Streaked Flycatcher</td>
<td>C, TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Tyrannopsis sulphurea</td>
<td>Sulphury Flycatcher</td>
<td>C, TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Megarynchus pitangua</td>
<td>Boat-billed Flycatcher</td>
<td>C, TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Myiozetetes cayanaensis</td>
<td>Rusty-margined Flycatcher</td>
<td>C, TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Myiozetetes similis</td>
<td>Social Flycatcher</td>
<td>C, TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Tyrannus melancholicus</td>
<td>Tropical Kingbird</td>
<td>C, TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Tyrannus savana**</td>
<td>Fork-tailed Flycatcher</td>
<td>C, P, TF</td>
<td>O</td>
</tr>
<tr>
<td>Grisotyrannus aurantioatrotacistatus***</td>
<td>Crowned Slaty Flycatcher</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>Empidonomus varius***</td>
<td>Variegated Flycatcher</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>Subilegatus modestus***</td>
<td>Southern Scrub Flycatcher</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Pyrocephalus rubinus***</td>
<td>Vermilion Flycatcher</td>
<td>C, P</td>
<td>O</td>
</tr>
<tr>
<td>Cnemotriccus fuscati duidae*</td>
<td>Campina Flycatcher</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Cnemotriccus fuscati beniensis</td>
<td>Fuscous Flycatcher</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Cnemotriccus fuscati binaculatus***</td>
<td>Fuscous Flycatcher</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>VIREONIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclarhis gujanensis</td>
<td>Rufous-browed Peppershrike</td>
<td>C, TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Family / Species</td>
<td>English name</td>
<td>Habitat</td>
<td>Record</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Vireo chivi**</td>
<td>Chivi Vireo</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>CORVIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanocorax chrysops diesingii*</td>
<td>Plush-crested Jay</td>
<td>C</td>
<td>O, V</td>
</tr>
<tr>
<td>HIRUNDINIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stelgidopteryx ruficollis</td>
<td>Southern Rough-winged Swallow</td>
<td>OA</td>
<td>O</td>
</tr>
<tr>
<td>Progne tapera</td>
<td>Brown-chested Martin</td>
<td>OA</td>
<td>O</td>
</tr>
<tr>
<td>Progne chalybea</td>
<td>Grey-breasted Martin</td>
<td>OA</td>
<td>O</td>
</tr>
<tr>
<td>Tachycineta albiventer</td>
<td>White-winged Swallow</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>TURDIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turdus amaurochalinus**</td>
<td>Creamy-bellied Thrush</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Turdus ignobilis</td>
<td>Black-billed Thrush</td>
<td>C, TF</td>
<td>S</td>
</tr>
<tr>
<td>TROGLODYTIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trogodytes musculus</td>
<td>Southern House Wren</td>
<td>C, P</td>
<td>O, V</td>
</tr>
<tr>
<td>Campylorhynchus turdinus</td>
<td>Thrush-like Wren</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Pheugopedius genibarbis</td>
<td>Moustached Wren</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>TURDIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turdus amaurochalinus**</td>
<td>Creamy-bellied Thrush</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Turdus ignobilis</td>
<td>Black-billed Thrush</td>
<td>C, TF</td>
<td>S</td>
</tr>
<tr>
<td>PASSERELLIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammodramus aurifrons</td>
<td>Yellow-browed Sparrow</td>
<td>C, P</td>
<td>O, V</td>
</tr>
<tr>
<td>ICTERIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psarocolius bifasciatus</td>
<td>Olive Oropendola</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Cacicus cela</td>
<td>Yellow-rumped Cacique</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Icterus cayanensis</td>
<td>Epaulet Oriole</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Sturnella militaris</td>
<td>Red-breasted Meadowlark</td>
<td>P</td>
<td>O</td>
</tr>
<tr>
<td>THRAUPIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schistochlamys melanopis</td>
<td>Black-faced Tanager</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>Paroaria gularis</td>
<td>Red-capped Cardinal</td>
<td>R</td>
<td>O</td>
</tr>
<tr>
<td>Tangara episcopus</td>
<td>Blue-grey Tanager</td>
<td>C, P, TF</td>
<td>S, O, V</td>
</tr>
<tr>
<td>Tangara pulmarum</td>
<td>Palm Tanager</td>
<td>TF</td>
<td>O, V</td>
</tr>
<tr>
<td>Hemithraupis flavicollis</td>
<td>Yellow-backed Tanager</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Volatinia jacarina</td>
<td>Blue-black Grassquit</td>
<td>C, P</td>
<td>S</td>
</tr>
<tr>
<td>Tachyphonus phoenicius*</td>
<td>Red-shouldered Tanager</td>
<td>C</td>
<td>S</td>
</tr>
<tr>
<td>Ramphocelus carbo</td>
<td>Silver-beaked Tanager</td>
<td>C, P, TF</td>
<td>S, O, V</td>
</tr>
<tr>
<td>Tersina viridis</td>
<td>Swallow Tanager</td>
<td>TF</td>
<td>S</td>
</tr>
<tr>
<td>Cyanerpes cyaneus</td>
<td>Red-legged Honeycreeper</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Dacnis caiana</td>
<td>Blue Dacnis</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Dacnis lineata</td>
<td>Black-faced Dacnis</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Sporophila nigricollis***</td>
<td>Yellow-bellied Seedeater</td>
<td>TF, P</td>
<td>S, O</td>
</tr>
<tr>
<td>Sporophila caerulescens***</td>
<td>Double-collared Seedeater</td>
<td>C, P</td>
<td>S</td>
</tr>
<tr>
<td>Sporophila angolensis</td>
<td>Chestnut-bellied Seed Finch</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td>Saltator maximus</td>
<td>Buff-throated Saltator</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>Saltator coerulescens</td>
<td>Greyish Saltator</td>
<td>TF</td>
<td>O</td>
</tr>
<tr>
<td>FRINGILLIDAE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euphonia chrysopasta</td>
<td>Golden-bellied Euphonia</td>
<td>TF</td>
<td>O</td>
</tr>
</tbody>
</table>
to the island of Marajó in Pará (Isler et al. 1997, Zimmer & Isler 2003). Olmos et al. (2011) reported *T. stictocephalus* in savannas at Serra da Cutia National Park, in the south-west of the state, and at Campos do Urupa within the Uru-Eu-Wau-Wau Indigenous Territory, in central Rondônia. Natterer’s Slaty-Antshrike has been found in several municipalities along the BR-364, between Vilhena and Porto Velho (Wikiaves 2018). Very common in the study area, being seen and caught in mist-nets daily (Fig. 3A). Five specimens were collected, a female on 2 June 2010 (MPEG 70950) and two pairs, on 27 February 2011 (UFAC 284, 286) and 1 March 2011 (UFAC 310, 309). Our records of *T. stictocephalus* extend the species’ range to extreme north-west Rondônia.

RONDÔNIA BUSHBIRD *Clytoctantes atrogularis*

A globally threatened species (BirdLife International 2017) whose unusual record in the study area was discussed by Guilherme & Santos (2013). The female collected (UFAC 473) represents the westernmost available record (Costa et al. 2017).

WHITE-FRINGED ANTWREN *Formicivora grisea*

Occurs from the right bank of the Madeira River east to the Atlantic coast, including all of north-east Brazil, as well as in northern South America including the Guianas, Venezuela and Colombia (Zimmer & Isler 2003). Recently found in *campinarana* in extreme south-west Amazonas (Guajará) and westernmost Acre (Cruzeiro do Sul and Mâncio Lima) (Poletto & Aleixo 2005, Guilherme 2012). In Rondônia, it was known from around Rio Preto in the north-east (Hellmayr 1910) and in savanna at Traçadal Biological Reserve and Serra da Cutia National Park (Olmos et al. 2011) in the centre-west. Abundant in *campinarana* at Miratinga. On 2 June 2010, three were collected (MPEG 70951, male, 70952, female, 70953, male). On 27–28 February 2011, four were trapped of which three were collected (UFAC 283, male, 288, female, 304, female) and on 20–23 August 2012 seven were trapped of which four were prepared as specimens (UFAC 476, juvenile male, 480, male, 510, female, 525, male). Records of *F. grisea* at Miratinga extend the species’ range in Rondônia 232 km to the north-west and 227 km north, from Rio Preto and Traçadal Biological Reserve, respectively.

BLACK MANAKIN *Xenopipo atronitens*

Considered an indicator species of *campinarana* (Borges et al. 2016a). Although abundant in habitat, it is patchily distributed (Aleixo & Poletto 2007, Poletto & Aleixo 2005, Guilherme & Borges 2011, Borges et al. 2014, 2016b). Previous records in Rondônia were by Whittaker (2004) at Taquaras (BR-425) and by Olmos et al. (2011) in savanna at Traçadal Biological Reserve and Serra da Cutia National Park. Since 2010, it has been photographed in several municipalities in eastern Rondônia, e.g. Machadinho d’Oeste, Parecis and Chupinguaia (Wikiaves 2018). At Miratinga, Black Manakin was seen and trapped daily. A male was collected on 6 February 2010 (MPEG 70977), while another four were collected subsequently, three in 2011 on 26 February (UFAC 276, female, 282, male) and 1 March (AC 312, female), and one on 22 August 2012 (UFAC 512, male). Records of *X. atronitens* at Miratinga extend its range to far north-west Rondônia.

BUFF-CHEEKED TODY-FLYCATCHER *Poecilotriccus senex*

Until very recently, known only from the type locality at Borba, Amazonas state, on the right bank of the lower Madeira River (Hellmayr 1910, Hoyo et al. 2004). In recent years, recorded at localities on the right bank of the middle (Cohn-Haft et al. 2007, Whittaker 2009) and upper Madeira (Whittaker 2004, Wikiaves 2018). In Rondônia, reported initially in 2002, at a *campina* at Taquaras (BR-425), in the north-west of the state (Whittaker...
Unfortunately, during its preparation, mass was not taken and neither was it possible to sex the bird (Fig. 3B; Table 2). Recent records indicate that the species inhabits patches of open vegetation in a swath from northern Rondônia and extreme south-east Amazonas (e.g. Humaitá National Forest) from the right bank of the Madeira east to the Madeira / Tapajós interfluvium (Whittaker 2004, 2009, Cohn-Haft et al. 2007, Wikiaves 2018).

PALE-BELLIED MOURNER *Rhytipterna immunda* (Figure 3C)
An uncommon species readily confused with a *Myiarchus* (Lanyon 1973). *R. immunda* is unique to savanna environments in Amazonia, from easternmost Colombia to the Guianas, and in Brazil it occurs patchily in WSV through the Negro drainage east to Pará, Amapá and Tocantins, and in southern Rondônia and Mato Grosso (Lanyon 1973, Scholes 2004, Whittaker 2004, Dornas et al. 2012). It has also been recorded in north-east Bolivia (Scholes 2004, Tobias & Seddon 2007). The first record in Rondônia was documented by Whittaker (2004) in the north-west of the state, in a *campina* at Taquaras, Porto Velho municipality. Subsequently, it was recorded in savanna at Serra da Cutia National Park, south-west Rondônia, and in Uru-Eu-Wau-Wau Indigenous Territory, in central Rondônia (Olmos et al. 2011). Also documented in the municipalities of Guajará-Mirim and Machadinho d’Oeste (Wikiaves 2018). Among species associated with *campinarana*, this was one of the most
abundant in mist-nets. Ten were trapped, of which five were collected: three on 26 and 28 February 2011 (UFAC 278, 295, 296) and two on 22 August 2012 (MPEG 82235–36). Records of *R. immunda* in north-west Rondônia (e.g. Miratinga) are the south-westernmost in Brazil.

CAMPINA FLYCATCHER *Cnemotriccusc fuscatus duidae*
Strongly associated with *campina / campinarana* (Borges *et al.* 2016a). Differs from other races of *C. fuscatus* by its much more yellowish underparts (Zimmer 1938; Fig. 4A). It occurs patchily across almost all of Amazonia (Tobias & Seddon 2007, Guilherme & Borges 2011, Borges *et al.* 2016a). One was collected on 22 February 2011 in *campinarana* (UFAC 294; Fig. 4A–B), the first record of this taxon in Rondônia. The closest previous record of *C. f. duidae* was on the Bolivia / Brazil border at Piedritas, on the left bank of the Madeira River, c.100 km south-west of our study area (Tobias & Seddon 2007). *C. f. duidae*, unlike its congeners (see below), appears to be resident in *campina / campinarana* in the region.

FUSCOUS FLYCATCHER *Cnemotriccusc fuscatus*
In addition to the specimen attributed to *C. f. duidae* (above), three other specimens of *C. fuscatus* were collected. Two (MPEG 70971 and UFAC 509) match *C. f. beniensis* and a third (UFAC 477) more closely resembles *C. f. bimaculatus* (Fig. 4A–C). Although Tobias & Seddon (2007) argued that *C. f. beniensis* could be synonymous with *C. f. fuscatior*, a series collected in Acre (Guilherme 2009, 2012, 2016) plus the two from Rondônia agree with the description presented by Gyldenstolpe (1945) to differentiate it from *C. f. bimaculatus*. Some of the differences noted by Gyldenstolpe (1945) and observed in UFAC 509 are: ‘…chin and throat grayish-white, usually without any yellowish tinge; breast greyish brown without olivaceous suffusion; bill larger and stronger…’ (Fig. 4A–C). Although bill length is almost identical among specimens UFAC 509 (*beniensis*) and 477 (*bimaculatus*) (14.1 vs. 14.04 mm respectively), in UFAC 509 it is broader (5.0 vs. 3.92 mm) and flatter than in UFAC 477 (Fig. 4C). The morphological similarities, as a whole, between UFAC 509 from Rondônia (Fig. 4A–C) and the holotype of *C. f. beniensis*, from Bolivia, were proven by comparing it with the photograph of the type specimen (NRM 569425) online (http://www.nrm.se). UFAC 509 also shows clear differences from the holotype of *C. f. fuscatior* (Fig. 4D). The latter, AMNH 211013 from Ecuador, as described by Chapman (1926) has ‘…Upperparts much darker and wing-bars narrower than in any other described race of the species… the breast grayish olive, the belly pale sulphur-yellow…’ (Fig. 4D). In UFAC 509, the wingbars are broad as in UFAC 477 (*bimaculatus*) (Fig. 4B) and the back and chest are brown (Fig. 4A–B), not grey as in *C. f. fuscatior* (Fig. 4D). Additionally, *C. f. fuscatior* is associated with *várzea* and river islands (Tobias & Seddon 2007), while UFAC 509 (Fig. 4A–C) and MPEG 70971 are from a *campinarana* enclave in *terra firme*, which reinforces our conviction that the two latter specimens represent *beniensis*. Taxonomy of the group is confused (Chapman 1926, Zimmer 1938, Gyldenstolpe 1945, Tobias & Seddon 2007) and genetic and vocal analyses should seek to clarify how many species-level taxa are involved. The certainty is that at least three taxa of the *C. fuscatus* complex occur at Miratinga. This is the first record of *beniensis* in Rondônia (where its status is uncertain), while *bimaculatus* is an austral migrant (Hellmayr 1910, Stotz *et al.* 1997, Whittaker 2004, Santos *et al.* 2011).

PLUSH-CRESTED JAY *Cyanocorax chrysops diesingii*
This subspecies is the Amazonian substitute of *C. c. chrysops*, which is common in south-east Brazil, northern Argentina, Uruguay, Paraguay and Bolivia (Ridgely & Tudor 1994). *C. c. diesingii* is a specialist of *campina / campinarana* (Aleixo & Poletto 2007, Whittaker 2009, Borges *et al.* 2016a). On 1 March 2011 a pair was observed vocalising and later one was
photographed at the edge of campinarana at Miratinga (Fig. 3D). In 2012, the species was seen daily in the same place. This taxon appears to be common in enclaves of campinarana along the BR-364 between Porto Velho and Abunã, in the north-west of the state. It is possible that C. c. diesingii occurs sympatrically with the recently discovered Campina Jay C. hafferi (Cohn-Haft et al. 2013) in campina / campinarana further north, in Amazonas, e.g. in WSV enclaves around Borba (Hellmayr 1910, Wikiaves 2018).

RED-SHOULDERED TANAGER *Tachyphonus phoenicius*

Typical of open vegetation in Amazonia (e.g. cerrado, campina and campinarana) and present in three different biogeographic regions. North of the Solimões / Amazon River in the states of Roraima, Pará and Amapá, as well as in eastern Colombia, southern Venezuela and the Guianas; in the south, from the Madeira basin in the region of Guayaramerin
in Bolivia (Tobias & Seddon 2007) to the east; and in the extreme south-west, in north-east Peru (Loreto), western Acre (Mâncio Lima and Cruzeiro do Sul) and south-western Amazonas (municipality of Guajará) (Hilty 2011, Guilherme 2012, 2016; E. Guilherme & A. Aleixo unpubl.). In Rondônia, T. phoenicius was recorded by Olmos et al. (2011) at Traça da Biological Reserve and Serra da Cutia National Park, in the south-west of the state, with other documented records from the municipalities of Parecis and Vilhena (Naumburg 1930, Wikiaves 2018). A female was collected in campinarana at our study site on 20 August 2012 (UFAC 475), extending the species’ range in Rondônia to the north, c.230 km from Traça da Biological Reserve.

Discussion

Although our visits to the study site were short, totalling just nine days, a significant number of species was recorded. The avifauna found exclusively in campinarana represented 17.7% of all species recorded and consists of birds that colonise forest edge, open country or habitat specialists (sensu Stotz et al. 1996, Borges 2004, Borges et al. 2016a). Of the 35 taxa considered by Borges et al. (2016a) to be WSV specialists throughout Amazonia, 17.1% were recorded in this small campinarana. However, if we consider only the 11 WSV specialists from the southern Solimões / Amazon basin (sensu Stotz et al. 1996), representativeness increases to 54.5%. Some species (e.g. Xenopipo atronitens) have specialised to such an extent that they occur only in enclaves of open vegetation across Amazonia (Capurrucho et al. 2013, Borges et al. 2016a). This implies that vegetation growing on white sand functions as ‘islands’ or mini-refugia (sensu Isler et al. 1997) within the surrounding forest. These ‘islands’ also offer a range of food resources capable of attracting seasonal migrants from other open biomes (e.g., Cerrado, Chaco, campos sulinos), which explains the comparatively large number of austral migrant species in this small patch of WSV. The result is a unique community of birds different from that in surrounding forest (Borges 2004). Therefore, the presence of an enclave of campinarana contributes significantly to regional diversity in Amazonia (Borges et al. 2016a).

Body mass and morphometrics.—These data, taken from 136 individuals of 55 different species (Table 2), are presented separately by age and gender (Table 2). Because many species in the study area are uncommon and patchily distributed, we consider it important to publish these mass and morphometric data. Such information forms the basis of comparative studies in various aspects of animal biology, including community structure and theoretical modelling (Hudson et al. 2013, Frasier 2016). Dunning (2008) compiled body mass data for 8,700 species worldwide, but for some the number of individuals sampled was very small and from a single locality, e.g. Thamnophilus stictocephalus, for which just one male from Bolivia was available to Dunning (2008). In this study, we not only increased the number of T. stictocephalus so measured, but we also collected mass and morphometrics for many other species from Brazil that were poorly sampled or unrepresented in Dunning’s work, e.g. Rondônia Warbling Antbird Hypocnemis ochrogyna, which was recently split from H. cantator (Isler et al. 2007; Table 2).

Conservation.—The small enclave of WSV at Miratinga lies within a region that is highly threatened (Vale et al. 2008, Fernandes et al. 2010). It is directly impacted by the BR-364 and, according to the Socioecological and Economic Zoning of Rondônia, forms part of 1.2 Sub-zone, which is subject to accelerated occupation and uncontrolled deforestation. Furthermore, the area is likely to witness increasing agricultural and other anthropogenic disturbance in the future (Fernandes et al. 2010). A concrete example of this is the recently implanted Jirau Hydroelectric Plant, 9.5 km from the study site. Allied to this, an energy transmission line, linking the states of Rondônia and Acre, transects the campinarana (see...
TABLE 2

<table>
<thead>
<tr>
<th>Species name</th>
<th>Age</th>
<th>Sex</th>
<th>Body mass Mean ± SD (n) max.–min.</th>
<th>Wing Mean ± SD (n) max.–min.</th>
<th>Tarsus Mean ± SD (n) max.–min.</th>
<th>Total length Mean ± SD (n) max.–min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Columbina passerina*</td>
<td>A</td>
<td>F</td>
<td>34</td>
<td>80</td>
<td>12</td>
<td>160</td>
</tr>
<tr>
<td>Columbina talpacoti</td>
<td>A</td>
<td>F</td>
<td>42</td>
<td>86</td>
<td>13</td>
<td>175</td>
</tr>
<tr>
<td>Leptotila verreauxi*</td>
<td>A</td>
<td>M</td>
<td>130</td>
<td>129</td>
<td>35</td>
<td>270</td>
</tr>
<tr>
<td>Geotrygon montana**</td>
<td>A</td>
<td>F</td>
<td>100</td>
<td>125</td>
<td>32</td>
<td>230</td>
</tr>
<tr>
<td>Nyctidromus nigrescens**</td>
<td>A</td>
<td>F</td>
<td>45</td>
<td>138</td>
<td>13</td>
<td>215</td>
</tr>
<tr>
<td>Phaethornis philippii**</td>
<td>A</td>
<td>U</td>
<td>(2) 4</td>
<td>(2) 55–70</td>
<td>(2) 4–3</td>
<td>(2) 124–154</td>
</tr>
<tr>
<td>Campylopterus largipennis</td>
<td>A</td>
<td>F</td>
<td>3</td>
<td>66</td>
<td>3</td>
<td>101</td>
</tr>
<tr>
<td>Polytus theresiae**</td>
<td>A</td>
<td>F</td>
<td>3</td>
<td>60</td>
<td>3</td>
<td>102</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>M</td>
<td>3</td>
<td>55</td>
<td>3</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>J</td>
<td>U</td>
<td>4</td>
<td>(2) 56</td>
<td>(2) 4</td>
<td>(2) 100–101</td>
</tr>
<tr>
<td>Bucco tamatia**</td>
<td>A</td>
<td>U</td>
<td>35</td>
<td>79</td>
<td>16</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>F</td>
<td>33</td>
<td>75</td>
<td>19</td>
<td>181</td>
</tr>
<tr>
<td>Picumnus aurifrons†</td>
<td>A</td>
<td>M</td>
<td>8</td>
<td>48</td>
<td>15</td>
<td>82</td>
</tr>
<tr>
<td>Pygiptila stellaris**</td>
<td>A</td>
<td>M</td>
<td>23</td>
<td>81</td>
<td>16</td>
<td>148</td>
</tr>
<tr>
<td>Clytoctantes atrogularis†</td>
<td>A</td>
<td>F</td>
<td>33</td>
<td>85</td>
<td>27</td>
<td>197</td>
</tr>
<tr>
<td>Formicivora grisea**</td>
<td>A</td>
<td>M</td>
<td>10.6 ± 0.8 (5)</td>
<td>54.6 ± 2.0 (5)</td>
<td>20 ± 2.5 (5)</td>
<td>134 ± 3.7 (5)</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>F</td>
<td>10.6 ± 0.8 (6)</td>
<td>51.3 ± 2.5 (6)</td>
<td>21.6 ± 5.1 (6)</td>
<td>129.5 ± 6.4 (6)</td>
</tr>
<tr>
<td>Thamnomanes saturninus</td>
<td>A</td>
<td>F</td>
<td>19</td>
<td>72</td>
<td>18</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>U</td>
<td>21</td>
<td>80</td>
<td>16</td>
<td>156</td>
</tr>
<tr>
<td>Thamnophilus stictocephalus**</td>
<td>A</td>
<td>M</td>
<td>(2) 17–19</td>
<td>(2) 65–66</td>
<td>(2) 25–27</td>
<td>(2) 148–158</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>F</td>
<td>(2) 12–16</td>
<td>(2) 65–66</td>
<td>(2) 24–27</td>
<td>(2) 135–160</td>
</tr>
<tr>
<td>Sciaphylax hemimelaena**</td>
<td>A</td>
<td>F</td>
<td>13</td>
<td>54</td>
<td>22</td>
<td>115</td>
</tr>
<tr>
<td>Hypocnemis ochrogyna²</td>
<td>A</td>
<td>U</td>
<td>11</td>
<td>55</td>
<td>18</td>
<td>124</td>
</tr>
<tr>
<td>Glyphorynchus spirurus</td>
<td>A</td>
<td>U</td>
<td>13 ± 0 (3)</td>
<td>73.3 ± 3 (3)</td>
<td>15 ± 1.7 (3)</td>
<td>154 ± 2 (3)</td>
</tr>
<tr>
<td>Xiphorhynchus elegans</td>
<td>A</td>
<td>U</td>
<td>39</td>
<td>105</td>
<td>20</td>
<td>226</td>
</tr>
<tr>
<td>Xenops minutus</td>
<td>A</td>
<td>U</td>
<td>14</td>
<td>65</td>
<td>15</td>
<td>123</td>
</tr>
<tr>
<td>Philydor erythrocerca²</td>
<td>A</td>
<td>U</td>
<td>27</td>
<td>95</td>
<td>20</td>
<td>176</td>
</tr>
<tr>
<td>Synallaxis rutilans**</td>
<td>A</td>
<td>U</td>
<td>13</td>
<td>61</td>
<td>15</td>
<td>155</td>
</tr>
<tr>
<td>Ceratopipra rubrocapilla</td>
<td>A</td>
<td>M</td>
<td>12</td>
<td>59</td>
<td>17</td>
<td>106</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>F</td>
<td>(2) 14</td>
<td>(2) 62–63</td>
<td>(2) 12</td>
<td>(2) 112</td>
</tr>
<tr>
<td>Manacus manacus</td>
<td>A</td>
<td>M</td>
<td>13.6 ± 1.1 (3)</td>
<td>51.3 ± 2 (3)</td>
<td>21.6 ± 5.5 (3)</td>
<td>105.3 ± 0.5 (3)</td>
</tr>
<tr>
<td></td>
<td>A</td>
<td>F</td>
<td>13</td>
<td>47</td>
<td>21</td>
<td>110</td>
</tr>
<tr>
<td>Machaeroptrerus pyrocephalus**</td>
<td>A</td>
<td>M</td>
<td>9</td>
<td>48</td>
<td>18</td>
<td>86</td>
</tr>
<tr>
<td>Species name</td>
<td>Age</td>
<td>Sex</td>
<td>Body mass Mean ± SD (n) max.–min.</td>
<td>Wing Mean ± SD (n) max.–min.</td>
<td>Tarsus Mean ± SD (n) max.–min.</td>
<td>Total length Mean ± SD (n) max.–min.</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----</td>
<td>-----</td>
<td>----------------------------------</td>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Xenopipo atronitens**</td>
<td>A</td>
<td>M</td>
<td>8.3 ± 0.5 (3) 8–9</td>
<td>49.6 ± 1.5 (3) 48–51</td>
<td>15.6 ± 2 (3) 14–18</td>
<td>85.6 ± 5.5 (3) 80–91</td>
</tr>
<tr>
<td>Terenotriccus erythrurus**</td>
<td>A</td>
<td>U</td>
<td>13 ± 0.5 (5) 12–16</td>
<td>66.6 ± 2.4 (5) 64–70</td>
<td>16.4 ± 2.4 (5) 14–19</td>
<td>127.4 ± 4.6 (5) 120–131</td>
</tr>
<tr>
<td>Mionectes oleagineus**</td>
<td>A</td>
<td>M</td>
<td>10 ± 0.5 (3) 10–12</td>
<td>56.6 ± 1.1 (3) 56–38</td>
<td>14.6 ± 2.4 (3) 12–20</td>
<td>115–126</td>
</tr>
<tr>
<td>Tolmomyias flavigentris**</td>
<td>A</td>
<td>M</td>
<td>11 ± 0.5 (3) 11–12</td>
<td>58 ± 2 (3) 58–21</td>
<td>21 ± 2 (3) 125</td>
<td></td>
</tr>
<tr>
<td>Pociotriccus senex</td>
<td>A</td>
<td>U</td>
<td>6 ± 0.5 (5) 6–7</td>
<td>36 ± 2.4 (5) 34–69</td>
<td>16 ± 2.4 (5) 14–20</td>
<td>120–127</td>
</tr>
<tr>
<td>Pociotriccus latirostris**</td>
<td>A</td>
<td>U</td>
<td>6 ± 0.5 (5) 6–7</td>
<td>36 ± 2.4 (5) 34–69</td>
<td>16 ± 2.4 (5) 14–20</td>
<td>120–127</td>
</tr>
<tr>
<td>Elaenia spectabilis</td>
<td>A</td>
<td>U</td>
<td>22 ± 0.5 (3) 21–24</td>
<td>92 ± 1.5 (3) 90–100</td>
<td>14 ± 1.5 (3) 13–20</td>
<td>160</td>
</tr>
<tr>
<td>Elaenia chilensis**</td>
<td>J</td>
<td>U</td>
<td>14 ± 0.5 (3) 13–17</td>
<td>68 ± 2 (3) 66–73</td>
<td>16 ± 2.4 (3) 14–20</td>
<td>113</td>
</tr>
<tr>
<td>Elaenia paravostris**</td>
<td>A</td>
<td>U</td>
<td>12 ± 2.4 (6) 8–14</td>
<td>71 ± 2.5 (6) 66–73</td>
<td>15.8 ± 2.5 (6) 12–20</td>
<td>133–158</td>
</tr>
<tr>
<td>Elaenia cristata**</td>
<td>A</td>
<td>U</td>
<td>2 ± 1.5 (5) 2–3</td>
<td>16 ± 0.5 (3) 15–17</td>
<td>12 ± 0.5 (3) 10–12</td>
<td>120–130</td>
</tr>
<tr>
<td>Tyrannulus datus**</td>
<td>A</td>
<td>U</td>
<td>9 ± 0.5 (3) 9–12</td>
<td>60 ± 2 (3) 58–70</td>
<td>13 ± 2 (3) 125</td>
<td></td>
</tr>
<tr>
<td>Phaenicoglaus murinus**</td>
<td>A</td>
<td>U</td>
<td>7.75 ± 0.5 (4) 7–8</td>
<td>56.5 ± 1.2 (4) 55–78</td>
<td>16 ± 0.5 (3) 15–17</td>
<td>122 ± 1.4 (4) 120–123</td>
</tr>
<tr>
<td>Myiarchus ferox</td>
<td>A</td>
<td>U</td>
<td>27 ± 1.7 (3) 25–28</td>
<td>86 ± 3.4 (3) 82–88</td>
<td>19 ± 0.5 (3) 19–20</td>
<td>198 ± 5.7 (3) 195–205</td>
</tr>
<tr>
<td>Rhytipterna immunda**</td>
<td>A</td>
<td>M</td>
<td>31 ± 0.5 (3) 30–31</td>
<td>85 ± 2.4 (3) 80–96</td>
<td>19 ± 0.5 (3) 19–20</td>
<td>199</td>
</tr>
<tr>
<td>Tyrannus melancholicus**</td>
<td>A</td>
<td>U</td>
<td>31 ± 0.5 (3) 30–31</td>
<td>95 ± 2.4 (3) 90–100</td>
<td>15 ± 2 (3) 13–15</td>
<td>220</td>
</tr>
<tr>
<td>Sublegatus modestus*</td>
<td>A</td>
<td>U</td>
<td>2 ± 1.5 (5) 2–3</td>
<td>66 ± 2.5 (5) 64–70</td>
<td>12 ± 2 (3) 11–12</td>
<td>138–142</td>
</tr>
<tr>
<td>Cuemotriccus fuscatous duidae A</td>
<td>A</td>
<td>U</td>
<td>11 ± 0.5 (3) 11–12</td>
<td>66 ± 2.5 (5) 64–70</td>
<td>21 ± 2 (3) 14–15</td>
<td>145</td>
</tr>
<tr>
<td>Cuemotriccus fuscatous beniensis A</td>
<td>A</td>
<td>U</td>
<td>65 ± 2.5 (5) 64–70</td>
<td>65 ± 2.5 (5) 64–70</td>
<td>22 ± 2 (3) 14–15</td>
<td>150</td>
</tr>
<tr>
<td>Cuemotriccus fuscatous bimaculatus A</td>
<td>A</td>
<td>U</td>
<td>69 ± 2.5 (5) 64–70</td>
<td>69 ± 2.5 (5) 64–70</td>
<td>23 ± 2 (3) 14–15</td>
<td>156</td>
</tr>
<tr>
<td>Tardus ignobilis**</td>
<td>A</td>
<td>M</td>
<td>55 ± 2.5 (3) 55–75</td>
<td>108 ± 3.4 (3) 105–110</td>
<td>31 ± 2 (3) 31–41</td>
<td>220</td>
</tr>
<tr>
<td>Tardus amaurochalinus</td>
<td>J</td>
<td>F</td>
<td>59 ± 2.5 (3) 55–75</td>
<td>109 ± 3.4 (3) 105–110</td>
<td>34 ± 2 (3) 31–41</td>
<td>206</td>
</tr>
<tr>
<td>Phaegopedius genobarbis</td>
<td>A</td>
<td>F</td>
<td>18 ± 0.5 (3) 18–20</td>
<td>59 ± 2.5 (3) 55–75</td>
<td>25 ± 2 (3) 25–35</td>
<td>170</td>
</tr>
<tr>
<td>Tangara episcopus</td>
<td>A</td>
<td>U</td>
<td>21 ± 0.5 (3) 21–23</td>
<td>88 ± 2.5 (3) 85–95</td>
<td>17 ± 2 (3) 17–22</td>
<td>180</td>
</tr>
<tr>
<td>Volatilia jacarina**</td>
<td>J</td>
<td>M</td>
<td>2 ± 1.5 (5) 2–3</td>
<td>12–15</td>
<td>2 (2) 12–15</td>
<td>116</td>
</tr>
<tr>
<td>A</td>
<td>M</td>
<td>2 ± 1.5 (5) 2–3</td>
<td>12–15</td>
<td>2 (2) 12–15</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>8 ± 0.5 (3) 8–10</td>
<td>47 ± 2 (3) 46–54</td>
<td>14 ± 2 (3) 106</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>24 ± 2.5 (3) 24–30</td>
<td>71 ± 2.5 (3) 70–80</td>
<td>18 ± 2 (3) 168</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>26 ± 2.5 (3) 26–31</td>
<td>76 ± 2.5 (3) 75–80</td>
<td>18 ± 2 (3) 180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 4 in Guilherme & Santos 2013) affecting also adjacent *terra firme* forests. Furthermore, commercial sand mining has directly impacted this small ‘island’ of WSV in north-west Rondônia. This process completely destroys the vegetation, thereby exposing the soil (Ferreira *et al.* 2013, Adeney *et al.* 2016). Post-exploration, the mined areas are usually abandoned without any type of environmental recovery (Ferreira *et al.* 2013; Fig. 2E). Finally, human impacts on this area date back many decades. One evidence of this is the Madeira / Mamoré railway, whose scar, 52 years after its decommissioning, is still visible in the centre of the study site (Fig. 1).

Although small and degraded, the patch of *campinarana* we surveyed still harbours many species of conservation concern (Table 1, Guilherme & Santos 2013). In general, patches of WSV in Amazonia are fragile and sensitive to anthropogenic activities, being both threatened and poorly represented within the protected area system (Adeney *et al.* 2016, Fine & Bruna 2016). Despite an increase in studies of these ecosystems in recent years, many remain largely unknown scientifically (Adeney *et al.* 2016, Fine & Bruna 2016). We recommend that the environmental authorities in Brazil aim to restore the environmental integrity of the site, and consider the possibility of incorporating our study area into a conservation unit.

Acknowledgements

We thank Francislaine Paulino for inviting us to monitor avifauna along the Porto Velho–Rio Branco powerline. CEPEMAR (Serviços de Consultoria em Meio Ambiente Ltda.) provided financial and logistical support. We also thank the team responsible for the ornithological collection of the Museu Paraense Emílio Goeldi, Belém, especially its curator, Dr Alexandre Aleixo, as well as Maria de Fátima Cunha Lima, Romina Batista and Sidnei de Melo Dantas for their support during this study. Paul Sweet of the American Museum of Natural History, New York, kindly photographed the holotype of *C. f. fuscatior*. Dr Evandro Ferreira (INPA) identified the two palm species in the study area via photographs. EG is grateful to CNPq for its support via project no. 474592/2010-3 (2010-2012). Specimen collection was authorised by the Chico Mendes Biodiversity Conservation Institute (ICMBio) of the Brazilian Ministry of the Environment, via SISBIO license no. 23269-1.

References

Address: Laboratório de Ornitologia, Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Campus Universitário BR 364, km 4, Distrito Industrial, CEP 69.920-900 Rio Branco, AC, Brazil.
First records of Sharp-tailed Sandpiper *Calidris acuminata* for Mozambique and continental Africa, and additional records of Pectoral Sandpiper *C. melanotos* in Mozambique, with comments on identification and patterns of occurrence

by Gary Allport

Received 5 June 2018; revised 16 August 2018; published 14 December 2018

http://zoobank.org/urn:lsid:zoobank.org:pub:2E56937F-F049-4AE0-B066-4AEF4298F203

Summary.—The first records of Sharp-tailed Sandpiper *Calidris acuminata* for Mozambique and continental Africa (1–2 adults, 4 February–16 April 2018), and additional records of Pectoral Sandpiper *C. melanotos* in Mozambique (1–2 birds, 20 February–31 March 2018) are reported, all at Macaneta, Maputo province. Identification features of these two species attaining breeding plumage are detailed and patterns of occurrence in Africa are discussed.

Pectoral *Calidris acuminata* and Sharp-tailed Sandpipers *C. melanotos* are phenotypically and ecologically similar high-latitude-breeding Holarctic shorebirds with long-distance migrations to South America and Australasia, respectively. Pectoral Sandpiper has two separate breeding areas, in the Arctic tundra of Siberia from the Yamal Peninsula (70°E) east to the Bering Sea, and along the north coasts of Alaska and Canada east to Hudson Bay (Cramp & Simmons 1983, Zockler & Lysenko 2000, Lappo et al. 2012). Sharp-tailed Sandpiper breeds solely in eastern Arctic Siberia from the Taimyr Peninsula (132°E) to Chaun Bay in Chukotka (170°E), and its entire breeding range is overlapped by that of Pectoral Sandpiper (Lappo et al. 2012). There is recent evidence that its breeding range may be expanding west (Lappo et al. 2012).

Sharp-tailed Sandpiper has a complex migration. Post-breeding, adults move south from Siberia on a broad front in early August, mostly passing east of Lake Baikal, and east to the Pacific coast of Russia and the Yellow Sea coasts of China (Barter 2002) and Korea, from where most apparently fly directly to Micronesia and New Guinea in late August (Higgins & Davies 1996). It is uncommon on the Asian coastal flyway south and west of the Yellow Sea, being reported only as a straggler in Vietnam, Cambodia, Peninsular Malaysia, Pakistan (Roberts 1990), India (Ali & Ripley 1969) and Sri Lanka (Roberts 1990, Henkanaththegedara 2002, van Gils et al. 2018). Migrants depart Papua New Guinea at the onset of the wet season, travelling south-west and arriving in north-west Australia mainly in mid September, then moving slowly south to south-east Australia, some crossing the continent en route, where the majority of the world population overwinters, with numbers peaking in December–early February (Higgins & Davies 1996). However, most juveniles, and a few adults, have a remarkably different strategy, migrating east from the breeding grounds across the Bering Strait to Alaska, where they fatten between mid August and late October (Tomkovich 1982, Handel & Gill 2010, Lindstrom et al. 2011). It is presumed that these birds fly from Alaska across central and western Oceania to reach Australia and New Zealand in a non-stop trans-Pacific flight of more than 10,000 km (Grönroos et al. 2010, Lindstrom et al. 2011). Some continue south along the Pacific coast of North America south to Washington state, less frequently to California, and there is a scatter of records east in
North America where the species is considered ‘possible anywhere’ (Mlodinow 2001). Prior to 2001 there were 32 records in the interior USA and 19 records on the Atlantic coast (Mlodinow 2001). It is possible that small numbers continue south on the west coast to Latin America, but to date there are only two records in the region, both recent, from Panama (Anon. 2016) and Bolivia (Knowlton 2016).

Sharp-tailed Sandpiper is a rare vagrant to Europe, with records in 11 countries (most in the UK, with 32 records by 2012: Hudson & the Rarities Committee 2013) of both juveniles and adults, mostly in August–October (Britton 1980, Cramp & Simmons 1983, van Gils et al. 2018). There are records in the Middle East and Central Asia, six from Kazakhstan (Wassink 2014) and singles in Oman (Eriksen & Victor 2013) and Yemen (Brooks et al. 1987).

In the Indian Ocean, the easternmost records are on Christmas Island (Australia), where there are four sets of records totalling 16 birds between 15 October and 10 December (James & McAllan 2014), with at least three records on Cocos (Keeling) Island in November–December 2016 (eBird). Further west there are five records from the Chagos archipelago in September–December (Carr 2015) and also five in the Seychelles, one in July, two overwintering in September / October–February and two on passage in November (Skerrett et al. 2017). There is one record from Madagascar in November 1999 (Patient 2003, Safford & Hawkins 2013).

There is also a remarkable specimen from Tristan da Cunha, collected on 16 June 1950, identified by Elliott (1957) as Sharp-tailed Sandpiper. This was followed by Cramp & Simmons (1983) and Higgins & Davies (1996), but the identity was questioned by Hockey et al. (1986). Mackworth-Praed & Grant (1962) referred to it as a Pectoral Sandpiper and Hockey et al. (1986) presumed that this was based on examination of the specimen at what is now the Natural History Museum, Tring (NHMUK). As this is an important record, the specimen was re-examined by A. J. Bond and the identity confirmed as a Sharp-tailed Sandpiper in breeding plumage (Fig. 1.). A. J. Prater (in litt. 2018) had also examined the specimen and noted that it was in suspended inner primary moult and probably therefore not fully adult (Hayman et al. 1996).

Pectoral Sandpiper also has a complex migration and vagrancy pattern. Siberian breeders are believed to depart south across the Arctic Ocean and travel along the east coast of the Pacific (Lees & Gilroy 2004), but the majority—an estimated 90%—migrates south in short hops (Piersma 1987, Farmer & Wiens 1999) via a narrow overland corridor through North America, not concentrating at particular wetlands (Skagen et al. 1999). It is surprising therefore that it is the most frequently recorded of the Nearctic vagrants to Europe (Lees & Gilroy 2004) with a regular annual influx in September–October mainly of juveniles, some of them clearly displaced by transatlantic weather systems. However, it is also possibly a ‘pseudo-vagrant’ (Gilroy & Lees 2003) with relatively small numbers from both North America and Siberia apparently on intentional, regular passage via Europe to wintering quarters in Africa (Lees & Gilroy 2004). This pattern is also mirrored in Australia and New Zealand, where small numbers of presumably Siberian breeders follow the west coast of the Pacific, joining groups of Sharp-tailed Sandpipers to overwinter mainly in Australia (Higgins & Davies 1996).

Pectoral Sandpiper is a regular vagrant to Africa, with records in 23 countries from northern, western, eastern and southern Africa (Hockey et al. 1986, Urban et al. 1986, van Gils et al. 2018b) as well as the Atlantic islands (Cramp & Simmons 1983, Hockey et al. 1986), Madagascar and the Indian Ocean islands (Hawkins & Safford 2013) as far south as the subantarctic (Viet et al. 2007). Up to five birds per annum are recorded in the southern African region (136 records 1965–2018; 36 records 1970–90) between September and May, but most arrive in December (peak) and remain until April. Peak arrival date is later than
most other migrant waders in the region and suggests that they slowly trickle south through the continent (Hockey et al. 1986). Records are mostly coastal and in the east of the region, especially Gauteng Province, South Africa, probably reflecting observer coverage (Hockey et al. 1986). It is surprising, therefore, that the first record in Mozambique was as recently as January 2017 (Allport 2018a).
Both species select similar habitats on passage and in winter, the muddy edges of shallow fresh or brackish wetlands with inundated or emergent sedges, grass, saltmarsh or other low vegetation including lagoons, swamps, lakes and pools near coasts, dams, waterholes, salt pans and hypersaline salt lakes inland (Higgins & Davies 1996). However, Sharp-tailed Sandpiper prefers coastal graminoid meadows in Alaska (Lindstrom et al. 2011) and particularly favours salt marsh and brackish lagoons where Salicornia and Cotula provide cover in Australia, less often using similar inland habitats such as wet fields of short grass. In Australia it is thought to occupy coastal mudflats mainly once ephemeral terrestrial wetlands have dried out (Higgins & Davies 1996).

The identification of this species pair was an early challenge to modern field ornithologists. Britton (1980) presented the first analyses of the identification characters of Sharp-tailed Sandpiper based on field experience of an adult and a juvenile, the written descriptions of all 16 British and Irish sight records at the time, and an examination of three specimens, along with many records of Pectoral Sandpiper. Harrop (1993) later revisited their identification adding more plumage detail. Both papers encompassed identification issues for juveniles and adults in summer or transitional plumages in the boreal autumn. As vagrancy in the non-breeding season and on spring migration is relatively uncommon, identification of winter-plumaged birds and those in transition into breeding plumage is scantily covered in the main Eurasian field guides. These plumages are, however, covered in Australasia (Higgins & Davies 1996, Pizzey et al. 2010), albeit not in great depth, perhaps because Sharp-tailed Sandpiper is a relatively common bird there with which most birdwatchers are very familiar.

Recent records in Mozambique

Regular bird observations were undertaken by GA while based in Maputo, Mozambique, between October 2010 and April 2018. Casual, low-effort, opportunistic observations were made at sites ranging from Ponta d’Ouro and Maputo Special Reserve, in Maputo province in the south, north through Gaza Province to the Bazaruto archipelago in Inhambane province (see Allport 2018b for map). Sightings were recorded in eBird. Coastal and inland wetlands were visited at all times of year. Beaches and mangrove-fringed mudflats in Maputo Bay, Inhambane and Barra were frequently visited, but freshwater and brackish swamps were mostly inaccessible. In 2017 the construction of a new bridge at Marracuene gave access to an area of tidal, tall brackish marsh in the Incomati estuary, the northern part of Maputo Bay, permitting regular coverage of these habitats for the first time.

On 4 February 2018 GA, M. Costeira da Rocha & B. Briggs visited Macaneta wetlands. At 09.10 h an area of tall saltmarsh with scattered reeds, sedges and Salicornia was searched on a rising spring tide where Curlew Sandpipers C. ferruginea and Little Stints C. minuta were feeding (25°44’05.83”S, 32°43’20.49”E). A bird that looked like a Pectoral Sandpiper was found at c.50 m range. It walked purposefully away from the observers and within two minutes started to roost on a bank. Some low-quality photographs were taken as the bird was walking. It was then flushed by an overflying Peregrine Falco peregrinus, along with all of the other waders, and settled distantly out of sight preventing further observations. The photographs (e.g. Fig. 2) suggested that the bird had an unusually ginger crown and a well-marked supercilium, but the pectoral band appeared well defined, the flanks not heavily or clearly marked, and its behaviour matched Pectoral Sandpiper. The photographs were widely shared as a Pectoral Sandpiper on social media without any queries being raised.

At 07.00 h on 18 February 2018, GA revisited the area on a rising spring tide and, in poor weather conditions, found a very different-looking Calidris at c.70 m range. It was feeding in Salicornia, skulking and clambering on and amongst the vegetation, displaying
a strongly marked face and head pattern. Based on previous experience (very similar behaviour to a UK bird; see Catley 1984), GA quickly identified it as a Sharp-tailed Sandpiper and fortunately the bird stayed in the same area for two hours as weather conditions improved, permitting better-quality photographs (Fig. 3; see https://vimeo.com/256275383). This was clearly the same bird as seen on 4 February 2018, but looked and behaved differently. Further inspection of images confirmed the identification, based on the following characters: similar to Pectoral Sandpiper but with bright ginger crown, dark ear-coverts contrasting with supercilium extending and broadening behind the eye, white eye-ring, shorter dark bill with limited pale flesh (not yellow) base, longer legged and with a small number of chevrons on the left flank, although these were only visible in some photographs (Hayman et al. 1986).

The sighting aroused considerable interest and birders from the region visited the site the next day, but the bird was not relocated. On 20 February a very similar bird in exactly the same area was photographed in poor weather and identified as a Sharp-tailed Sandpiper, and the same bird was seen again the following day. However, a close check of the photographs revealed differences from the original bird, and on 22 February it was seen well by GA and identified as a Pectoral Sandpiper (see images at https://ebird.org/view/checklist/S43106332).

On the next spring tide, on 2 March 2018, GA, R. Lindsay-Rae, J. R. Nicolau, D. Pitzalis & D. Snow awaited the rising water, and rather surprisingly at 06.15 h a Sharp-tailed Sandpiper that was clearly not the original bird was found by JRN; it was then joined a few minutes later by the bird seen on 4 and 18 February. The two birds roosted over the high tide and were seen and photographed well (Fig. 4). On 3 March the same area again held two Sharp-tailed Sandpipers but on this occasion they were joined by two Pectoral Sandpipers, and the four birds formed a small flock for two hours over the high tide (Fig. 5).

The two Sharp-tailed Sandpipers remained, usually together, until 6 March when the tidal range ebbed and the feeding area quickly dried out. One Pectoral Sandpiper was also seen but usually not with the Sharp-tailed Sandpipers. The three birds reappeared on the new moon tides on 18–21 March, and singles of both species were seen foraging separately on 31 March. A single Sharp-tailed Sandpiper was last seen on the spring tide on 16 April (Table 1).
Figure 4. Two adult Sharp-tailed Sandpipers *Calidris acuminata*, 2 March 2018; the original bird (front) showing bright fringes to the tertials and a single well-marked chevron on the flanks (© J. R. Nicolau / Unearth Safaris)

Figure 5. Two adult Sharp-tailed Sandpipers *Calidris acuminata* (below and right) and two Pectoral Sandpipers *C. melanotos* (above and left), Macaneta, Mozambique, 3 March 2018 (© Michael Mason)
Both Sharp-tailed Sandpipers showed evidence of having recently completed outer primary moult (cf. Fig. 6.) and were therefore aged as adults (see Prater et al. 1977). It was impossible to determine gender as they were similar in size.

Identification

The multiple misidentification of both species by experienced observers reported herein is salutary and warrants comment. Whilst the treatment of both species in boreal autumn plumages is thoroughly covered by the main identification texts (see above), they are not well covered during spring moult into breeding plumage. It is worth flagging the following features.

Head pattern.—The combination of rufous crown, darker ear-coverts, paler supercilium widening behind the eye and pale eye-ring provide an excellent suite of features for distinguishing Sharp-tailed Sandpiper from Pectoral Sandpiper in winter / spring plumages. However, note that the supercilium is illustrated as being broader behind the eye in Pectoral Sandpiper in some references (e.g. Snow & Perrins 1998). Use of this feature is also made more complex as the supercilium in Sharp-tailed Sandpiper becomes less well defined as summer plumage is attained, when dark-centred feathers speckle the face, breaking-up the superciliary pattern. In contrast the eye-ring emerges as even more distinct during this transition. The dark ear-coverts add contrast to the definition of the supercilium in winter plumage, when they represent a strong feature, but also become less discernible in summer plumage. The two Pectoral Sandpipers also showed quite bright ginger crowns in certain lights, more so than illustrated in major field guides, although much less well marked than the adjacent Sharp-tailed Sandpipers.

Breast and underparts pattern.—Underparts pattern is cited as an important feature in separating these two species, but it is clear that as Sharp-tailed Sandpiper mouls into summer plumage this can be very similar to Pectoral Sandpiper (Fig. 1). Pectoral Sandpiper can also show dark-centred feathers on the flanks in summer plumage, so it is only the dark chevrons on the flanks that make the identification of Sharp-tailed Sandpiper obvious at this time (February–May). It is also unclear how much streaking Pectoral Sandpiper can show on the rear flanks and undertail-coverts, making identification using this feature a question of degree and difficult to assess in lone individuals.

TABLE 1

Summary of observations of Sharp-tailed Sandpiper *Calidris acuminata* (STS) and Pectoral Sandpiper *C. melanotos* (PS) at Macaneta, Mozambique, February–April 2018.

<table>
<thead>
<tr>
<th>Date</th>
<th>STS</th>
<th>PS</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 February</td>
<td>1</td>
<td></td>
<td>Identified as Pectoral Sandpiper</td>
</tr>
<tr>
<td>18 February</td>
<td>1</td>
<td></td>
<td>Identified as Sharp-tailed Sandpiper</td>
</tr>
<tr>
<td>20-21 February</td>
<td>1</td>
<td></td>
<td>Identified as Sharp-tailed Sandpiper</td>
</tr>
<tr>
<td>22 February</td>
<td>1</td>
<td></td>
<td>Identified as Pectoral Sandpiper</td>
</tr>
<tr>
<td>2 March</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 March</td>
<td>2</td>
<td>2</td>
<td>Four birds in one flock</td>
</tr>
<tr>
<td>4-6 March</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>18-19 March</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>20 March</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31 March</td>
<td>1</td>
<td>1</td>
<td>Possibly two Sharp-tailed Sandpipers</td>
</tr>
<tr>
<td>16 April</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6. The second Sharp-tailed Sandpiper *Calidris acuminata*, Macaneta, Mozambique, March 2018, showing two old outermost primaries, indicating that it is an adult; this bird was mostly in winter plumage when initially found on 2 March 2018 (© David Hoddinott)
Bill colour.—Pectoral Sandpiper usually shows a clear yellow basal third to the bill, and the two Sharp-tailed Sandpipers had a pale flesh-coloured base to the mandible (Fig. 4). However, review of images of summer-plumaged Sharp-tailed Sandpipers revealed birds with clear yellow coloration over up to 50% of the mandible, ‘bleeding’ onto the maxilla (e.g. Lundquist 2011 in April). Therefore, bill colour can be used to positively identify a Sharp-tailed Sandpiper only if it is mostly dark and does not show yellow tones.

Thus the combination of facial pattern and to a lesser extent bill characters are critical for separating these two species in late winter / early spring. Underparts pattern may be conclusive but only if clear chevrons are evident.

Records and vagrancy

A literature search demonstrated that the Sharp-tailed Sandpipers reported herein are the first and second records for Mozambique, for the southern Africa region (T. Hardaker in litt. 2018) and for continental Africa (R. J. Dowsett in litt. 2018). Based on the pattern of records in Europe, Central Asia, the Middle East and on Indian Ocean islands, the possibility of vagrancy by this species to mainland Africa, and the southern Africa region in particular, had been anticipated (Hardaker 2008, Peacock 2016). However, it is remarkable that two were found together with relatively limited effort in suitable habitat in Mozambique. Indeed, several visiting birders commented that the species might prove to be regular at the site in small numbers as a pseudo-vagrant (Gilroy & Lees 2003), as is true for a few other shorebirds at specific wintering localities in the region, such as infrequent but regularly occurring Great Knot *C. tenuirostris* at Barra, Mozambique (Peacock 2016), Steppe Whimbrels *Numenius phaeopus alboaxillaris* at four localities in southern Mozambique and South Africa (Allport 2017), and, further afield, Pacific Golden Plover *Pluvialis fulva* in Gabon (Christy 1990).

There are two possible routes of vagrancy for these birds. The first is the Central Asian–East African corridor, possibly via the Rift Valley. The first conclusive evidence of the use of the Rift Valley overland migratory route by coastal waders was shown by a satellite-tagged Steppe Whimbrel in 2016 (Allport et al. in press) but there is strong circumstantial evidence that this route is used by a wide range of shorebirds wintering in southern Africa (Dowsett 1980). Use of this overland flyway, potentially with no continental stopovers, might explain the lack of records of Sharp-tailed Sandpiper further north in Africa. Southern coastal Mozambique lies on a natural route where migrants following the Rift southbound would reach the coast of the Indian Ocean (a similar explanation for coastal records of Baltic Gull *Larus f. fuscus* in southern Mozambique has been postulated: Allport 2018b). Two records of Sharp-tailed Sandpiper in the Middle East support this idea, and the possibility that the species breeds further west in Siberia (Lappo et al. 2012) increases the likelihood of vagrancy via this route.

The cluster of records on Indian Ocean islands points to a second, possible, transoceanic route. The frequency of records on Christmas Island suggests that Sharp-tailed Sandpipers regularly wander to the eastern Indian Ocean on southbound migration in September–December, probably from the major migratory crossing, Micronesia / Papua New Guinea to north-west Australia, a movement with a strong westerly component and likely to result in overshoots. There is a general decrease in the frequency of records south and west across the Indian Ocean, with none from the relatively well-watched islands of Mauritius and Réunion (Safford & Hawkins 2013), a pattern which again suggests that the origin of vagrancy lies to the east, and only a few stragglers might reach coasts of East Africa. It should also be considered that Sharp-tailed Sandpipers might enter the Indian Ocean via the Indian Subcontinent, but there are only two records in Pakistan / India (Roberts 1990).
and five from Sri Lanka (Henkanaththegedara 2002), making this unlikely to be a major route for transoceanic vagrants. One other, even more unlikely, but intriguing possibility is overshooting by juveniles leaving Alaska intent on reaching their Australian wintering grounds for the first time. Grönroos et al. (2010) postulated that the potential single-haul, 12,000 km migratory flight of juveniles from Alaska to Australia would cross Papua New Guinea potentially on a broad front, meaning some might easily overshoot into the Indian Ocean. Most of the birds recorded in the Indian Ocean were not aged, but all those photographed on the Chagos archipelago were adults (P. Carr pers. comm.) with just one record from the Cocos (Keeling) Islands of a juvenile (19 November 2016, https://ebird.org/view/checklist/S32777999). Both birds in Mozambique were adults.

Both the Rift Valley and Indian Ocean transoceanic routes therefore seem plausible for the birds recorded in Mozambique. Only further records in the region might enable the route of vagrancy to be better understood.

Turning to Pectoral Sandpiper, Hockey et al. (1986) concluded that those found in southern Africa enter the continent solely via the Nearctic–Europe route rather than the Asia–East Africa flyway. In drawing this conclusion, the more easterly distribution of Pectoral Sandpiper records in southern Africa was considered to reflect probable observer bias, and the lack of records of Sharp-tailed Sandpiper—which it was presumed would have arrived via the Central Asia–East Africa flyway—was noted in support of this hypothesis, as was the questionable validity of the Tristan da Cunha record. Both latter suppositions are now invalid, and the notion that Pectoral Sandpiper has a range of inter-African migratory strategies including southerly migration from the western Siberian breeding range via the Asia–East Africa flyway to eastern Africa acquires greater support (Hockey & Douie 1995, Lees & Gilroy 2004, Hjort 2005). This not to say that Pectoral Sandpipers of a Nearctic, rather than Palearctic origin, do not enter the region too, as held by Curry-Lindahl (1981), and implied by Feare & Watson (1984) for the Indian Ocean islands; both entry routes to the continent appear likely.

The distribution of records in the region must, to some extent, reflect both observer coverage and ability to identify the species (as in Australia and New Zealand: Higgins & Davies 1996), but the number of records strongly supports Lees & Gilroy’s (2004) idea that a small population regularly overwinters in Africa and many of these are probably intentional migrants.

Acknowledgements

Barnaby Briggs and Manuel Costeira da Rocha were regular field companions and co-finders of the first Sharp-tailed Sandpiper. David Gandy, Terry Townshend, David Bakewell and Trevor Hardaker helped in the initial identifications. Many people visited the site but Etienne Marais, Robert Lindsay-Rae, Justin Rhys Nicolau, David Snow, Diego Pitzaís and Emidio Sumbane made a special effort, which helped enormously in the finding of the second Sharp-tailed Sandpiper. Susan Mvungi, Graham Catley, Andy Stoddart, Trevor Hardaker, David Hoddinott, Tomas Lundquist, Michael Mason, Justin Rhys Nicolau and Peter Rosewarne provided photographs and gave permission for their reproduction here. Alex Bond examined specimens and arranged the photograph by Harry Taylor. The local people of Macaneta dealt with an invasion of birders with tempered inquisitiveness, patience and the good-natured humour that characterises their country.

This paper is dedicated to Tim Cleeves with whom I had my first discussion of Sharp-tailed Sandpiper identification on the Wirral, UK, in the late 1970s, together picking the brains of Graham Williams, one of the finders of the Shotton Pools bird in 1973 (Johnson et al. 1974). Tim went on to become a guru on the topic and later re-identified a bird at Frodsham in 1983 (Pitches 2018). Tim and I had not been in touch for many years but it was with great sadness that I learned of his death in December 2017, and I have missed what would have surely been an enthusiastic discussion with him on the various birds at Macaneta, Mozambique.
References:
Sultan Qaboos Univ., Muscat.

Address: BirdLife International, The David Attenborough Building, Pembroke Street, Cambridge, CB2 3QZ, UK, e-mail: Gary.Allport@birdlife.org
Sixty years on: birds of the Sierra del Carmen, Coahuila, Mexico, revisited

by Eliot T. Miller, John E. McCormack, Greg Levandoski & Bonnie R. McKinney

Received 5 July 2018; revised 29 October 2018; published 14 December 2018

http://zoobank.org/urn:lsid:zoobank.org:pub:E0E3C102-6602-41CB-89E7-D244B09CB8B4

Summary.—The rugged peaks of the Sierra del Carmen, Coahuila, visible from the Chisos Mountains in Texas, have tempted birdwatchers for decades, yet few have accessed the range, and its avifauna is poorly known. Based primarily on our own observations, supplemented by the literature, museum holdings and eBird records, we present an updated list of the region’s avifauna. This list comprises 301 species, 137 of which breed in the region. As in previous surveys, we found bird species characteristic of both the intermontane West and tropical mountains to the south. We confirm that the Sierra del Carmen is slightly less speciose than sky islands of the Sierra Madre Occidental. Nevertheless, it is the northernmost outpost or migratory stopover of several regionally and globally rare species, and could serve as a stepping stone for species moving north with climate change. Although not a centre of endemism, the Sierra del Carmen is a vital and unique region for avian diversity.

Large online citizen science initiatives such as eBird (Sullivan et al. 2009) have successfully documented global biodiversity, with >500 million observations in its database, representing all countries and 99% of extant avian diversity. Yet, eBird coverage is still highly biased toward well-visited areas, leaving the avifauna across large swathes of the Americas, especially Central and South America, poorly known. Directly across the US border from Big Bend National Park in Texas is the Sierra del Carmen, an isolated mountain range in northern Coahuila, Mexico. Its rugged physiognomy and forested expanses are visible from the Chisos Mountains of Big Bend National Park, but travel there from the USA has always been challenging, making it far more remote and unknown than its distance from major birding areas alone. The Sierra del Carmen forms part of a chain of sky-island mountain ranges extending north from the Sierra Madre Oriental, much like the well-known Madrean Sky Islands north of the Sierra Madre Occidental, and it is the largest forested highland area for many kilometres in any direction. The Chisos Mountains, a well-known birdwatching hotspot, lie 64 km to the north-west and the almost unknown Sierra la Encantada 32 km to the south-east, but these forested highlands are significantly smaller in total area than the Sierra del Carmen. To date, the avifauna of the Sierra del Carmen is little known except to the few people that have lived in the area for years. Sixty years ago, Alden Miller, Aldo Starker Leopold and Ward Russell spent a month in the Sierra del Carmen collecting and observing birds (Miller 1955b). Since then, there has been just one published bird list from the Sierra del Carmen (Wauer & Ligon 1977). As of 1 March 2017, there were only 128 checklists for the Sierra del Carmen in eBird’s database (59 of them by ourselves). These checklists, as well as research papers on the ecology and evolution of birds in the Sierra del Carmen (Wauer & Ligon 1977, McCormack & Smith 2008) appear to confirm observations first made by Miller (1955b): the absence of certain species that would appear to possess suitable habitat in the range, and niche expansion.
into these vacant habitats by other species. Given that recent studies of the avifauna of nearby regions have documented new and surprising records (Benson et al. 1989, Contreras-Balderas et al. 2004, McCormack et al. 2007, Ruvalcaba-Ortega & González-Rojas 2009, Sánchez-González 2013), we have endeavoured here to synthesise a complete checklist for the Sierra del Carmen.

Methods

Location.—The Sierra del Carmen is in northern Coahuila, Mexico (Fig. 1) and largely lies within the 200,000-ha Maderas del Carmen Flora and Fauna Protected Area. The majority of the land is owned and managed by the international cement company CEMEX, which has, since the late 1990s, managed it as a biological preserve (McKinney 2012). Elevation in this region spans 560 m (where Boquillas Canyon empties into the Rio Grande) to the highest peaks above 2,700 m. Los Pilares field station, the base for much recent field work, is at 1,150 m in the west of the range, in Chihuahuan Desert habitat near the mouth of Cañón El Alamo, site of the former Rancho San Isidro.

The Sierra del Carmen is a sky island at the north end of the Sierra Madre Oriental, part of a corridor linking the Mexican highlands to the Rocky Mountains (McKinney 2012). Vegetation in the region can be broadly classified into five major associations: desert shrub, grasslands, chaparral, pine–oak woodland and fir–pine forest. The lowest desert elevations contain creosotebush Larrea tridentata, honey mesquite Prosopis glandulosa, prickly pear cactus Opuntia spp., lechuguilla Agave lechuguilla, native grasses Poaceae spp. and candelilla Euphorbia antisiphilitica. In a transition zone above this, native grasslands, Yucca spp., sotol Dasylirion wheeleri and beargrass Nolina texana dominate. The higher canyons are characterised by pine–oak–juniper Pinus–Quercus–Juniperus woodland, with large stands of American basswood Tilia americana, dogwood Cornus sp., ninebark Physocarpus monogynus and other deciduous woodland species in riparian areas. The highest elevations are dominated by Douglas fir Pseudotsuga sp., Coahuila fir Abies durangensis var. coahuilensis, Arizona cypress Cupressus arizonica, along with several stands of blue spruce Picea sp., quaking aspen Populus tremuloides, oaks and pines. The high escarpments of the sierra trap moisture-laden Gulf Coast air masses, with most rainfall during mid to late summer. Snow and ice storms can occur in winter (McKinney 2012). As a testament to the diversity of habitat types, some authors have divided Mexico into seven major life zones below the Artic–alpine belt (Goldman & Moore 1945); five of these occur in the Sierra del Carmen.

Data collection methods.—Our checklist is a synthesis of our own visual observations and mist-net records, eBird records, museum holdings and published reports (Marsh 1936, Marsh & Stevenson 1938, Taylor et al. 1945, Miller 1955b, Van Hoose 1955, Urban 1959, Ely 1962, Wauer & Ligon 1977, Garza de León et al. 2007). We follow current eBird taxonomy (https://ebird.org/news/2018-ebird-taxonomy-update), which is closely aligned to current AOS taxonomy, except that eBird recognises Mexican Duck Anas diazi as a species distinct from Mallard A. platyrhynchos. Records are assigned to one of four seasons: spring (March–May), summer (June–August), autumn (September–November) and winter (December–February). Most of our observations are made by BRM, who worked as wildlife coordinator in 2001–13 (McKinney 2012). JEM conducted field work in the region for months at a time between 2002 and 2008. We obtained eBird records by querying the database for all records from Coahuila, then selected a subset of records from a region bounded by the USA / Mexico border to the north, by Mexican highway 53 to the west and south (which runs from Boquillas del Carmen towards Santa Rosa de Múzquiz), and by the road between La Linda, Coahuila, Mexico, and highway 53 to the east. Most of our unusual observations and breeding records were documented with photographs or sound-recordings. A few of
our observations are unusual in respect to what has been published to date for the Sierra del Carmen, but are of birds known to occur, albeit rarely, in the Big Bend area; we note these cases. We also note when historical records are associated with museum specimens.
Results

The comprehensive list of the avifauna of the Sierra del Carmen comprises 301 species, 137 of which are confirmed breeders, and an additional four might breed in the area (Table 1). The only species we have excluded from the list are Pine Flycatcher Empidonax affinis (Taylor et al. 1945), which we consider to represent a misidentification, Woodhouse’s Scrub Jay Aphelocoma woodhouseii, which was previously reported in error to eBird, and Imperial Woodpecker Campephilus imperialis. Based on indirect evidence (large nest cavities and discussion with a local hunter), R. Wauer believed that the species might formerly have occurred in the Sierra del Carmen (Nelson 2002), but we have found no evidence to support its presence and do not include it here. Below, we provide details of notable records.

Species accounts.—Noteworthy records primarily fall into two categories: significant northward range extensions of species that might routinely occur in small numbers, and species that have experienced recent regional range expansions and are now fairly common in the area.

LEAST GREBE Tachybaptus dominicus
A female with a chick on its back was observed in summer 2002 at Tanque Zacatosa, near Rancho Pilares. Also documented to the south-east near Sierra Encantada (McCormack et al. 2007). Considered a rare resident but vacates the area when water tanks dry up during long droughts.

TRICOLOURED HERON Egretta tricolor
There have been a couple of sightings of this uncommon to rare autumn migrant in the Sierra del Carmen. There are a handful of previous records from Chihuahua, where it is considered a rare autumn migrant (Moreno-Contreras et al. 2015).

SWALLOW-TAILED KITE Elanoides forficatus
Observed on 20 May 2007 on the road between Pilares and Múzquiz, flapping and gliding steadily north. This record is well west of the species’ regular migration route, and probably involved a vagrant.

COMMON BLACK HAWK Buteogallus anthracinus
The first nesting record was in May 2002, when BRM & J. Delgadillo Villalobos observed a pair at a nest near Campo Uno. The nest, in a Ponderosa pine Pinus ponderosa, held two young, and an immature was photographed nearby in June 2002. This nest was used annually until 2013. Also in May 2002 pairs were observed in Cañón Carboneras, Cañón Juarez and midway along Cañón El Oso. The species has undergone a range contraction throughout the south-west USA and is considered threatened in Mexico, endangered in New Mexico, threatened in Texas, and is a candidate for listing in Arizona (Schnell 1994), although it breeds infrequently in the Davis Mountains and Big Bend area (Benson & Arnold 2001). It probably occurs sparsely throughout suitable riparian habitat in the Sierra del Carmen, and was first noted from these mountains in the mid-20th century (Taylor et al. 1945).

SOLITARY EAGLE Buteogallus solitarius
The first observation was in March 2003 in upper Juárez Canyon, by BRM & J. Delgadillo Villalobos. Thereafter, BRM saw at least three others: singles at Campo Uno flying around El Mirador, near Campo Cinco, and in flight near Campo Tres. At least one or two were
TABLE 1
Complete bird checklist, with breeding status, of the Sierra del Carmen, Coahuila, Mexico, including the authors’ observations in 2001–15. BRM was a resident in the area in 2001–13. Status abbreviations: RB = resident breeder, M = migrant non-breeder, MB = migrant breeder, H = hypothetical breeder.

<table>
<thead>
<tr>
<th>English name</th>
<th>Scientific name</th>
<th>Spring</th>
<th>Summer</th>
<th>Autumn</th>
<th>Winter</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snow Goose</td>
<td>Anser caerulescens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Canada Goose</td>
<td>Branta canadensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Wood Duck</td>
<td>Aix sponsa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Blue-winged Teal</td>
<td>Spatula discors</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Cinnamon Teal</td>
<td>Spatula cyanoptera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Northern Shoveler</td>
<td>Spatula clypeata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Gadwall</td>
<td>Mareca strepera</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>American Wigeon</td>
<td>Mareca americana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Mallard × Mexican Duck</td>
<td>Anas platyrhynchos × diazi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Northern Pintail</td>
<td>Anas acuta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Green-winged Teal</td>
<td>Anas crecca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Canvasback</td>
<td>Aythya valisineria</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Redhead</td>
<td>Aythya americana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Ring-necked Duck</td>
<td>Aythya collaris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Greater Scaup</td>
<td>Aythya marila</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Lesser Scaup</td>
<td>Aythya affinis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Bufflehead</td>
<td>Bucephala alboela</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Common Goldeneye</td>
<td>Bucephala clangula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Common Merganser</td>
<td>Mergus merganser</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Ruddy Duck</td>
<td>Oxyura jamaicensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Northern Bobwhite</td>
<td>Colinus virginianus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Scaled Quail</td>
<td>Callipepla squamata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Montezuma Quail</td>
<td>Cyrtorhynchus montezumae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Wild Turkey</td>
<td>Meleagris gallopavo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Least Grebe</td>
<td>Tachybaptus dominicus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Pied-billed Grebe</td>
<td>Podilymbus podiceps</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Eared Grebe</td>
<td>Podiceps nigricollis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Double-crested Cormorant</td>
<td>Phalacrocorax auritus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>American White Pelican</td>
<td>Pelecanus erythrorhynchos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>American Bittern</td>
<td>Botaurus lentiginosus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Least Bittern</td>
<td>Ixobrychus exilis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Great Blue Heron</td>
<td>Ardea herodias</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Great Egret</td>
<td>Ardea alba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Snowy Egret</td>
<td>Egretta thula</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Tricoloured Heron</td>
<td>Egretta tricolor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Cattle Egret</td>
<td>Bubulcus ibis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Green Heron</td>
<td>Butorides virescens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Black-crowned Night Heron</td>
<td>Nycticorax nycticorax</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Yellow-crowned Night Heron</td>
<td>Nyctanassa violacea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>White-faced Ibis</td>
<td>Plegadis chihi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Black Vulture</td>
<td>Coragyps atratus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Turkey Vulture</td>
<td>Cathartes aura</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Osprey</td>
<td>Pandion haliaetus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Swallow-tailed Kite</td>
<td>Elanoides forficatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Golden Eagle</td>
<td>Aquila chrysaetos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>English name</td>
<td>Scientific name</td>
<td>Spring</td>
<td>Summer</td>
<td>Autumn</td>
<td>Winter</td>
<td>Status</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Mississippi Kite</td>
<td>Ictinia mississippiensis</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Northern Harrier</td>
<td>Circus hudsonius</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>Sharp-shinned Hawk</td>
<td>Accipiter striatus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Cooper’s Hawk</td>
<td>Accipiter cooperii</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Northern Goshawk</td>
<td>Accipiter gentilis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Bald Eagle</td>
<td>Haliaeetus leucocephalus</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>M</td>
</tr>
<tr>
<td>Common Black Hawk</td>
<td>Buteogallus anthracinus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Solitary Eagle</td>
<td>Buteogallus solitarius</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Harris’s Hawk</td>
<td>Parabuteo unicinctus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>White-tailed Hawk</td>
<td>Geranoaetus albicaudatus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Grey Hawk</td>
<td>Buteo plagiatus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Swainson’s Hawk</td>
<td>Buteo swainsoni</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Zone-tailed Hawk</td>
<td>Buteo albonotatus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Red-tailed Hawk</td>
<td>Buteo jamaicensis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Sora</td>
<td>Porzana carolina</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>American Coot</td>
<td>Fulica americana</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Sandhill Crane</td>
<td>Antigone canadensis</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Black-necked Stilt</td>
<td>Himantopus mexicanus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>American Avocet</td>
<td>Recurvirostra americana</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Kildeer</td>
<td>Charadrius vociferus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Upland Sandpiper</td>
<td>Bartramia longicauda</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Long-billed Curlew</td>
<td>Numenius americanus</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Baird’s Sandpiper</td>
<td>Calidris bairdii</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Least Sandpiper</td>
<td>Calidris minutilla</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Pectoral Sandpiper</td>
<td>Calidris melanotos</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Long-billed Dowitcher</td>
<td>Limnodromus scolopaceus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Wilson’s Snipe</td>
<td>Gallinago delicata</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Wilson’s Phalarope</td>
<td>Phalaropus tricolor</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Spotted Sandpiper</td>
<td>Actitis macularius</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Solitary Sandpiper</td>
<td>Tringa solitaria</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Greater Yellowlegs</td>
<td>Tringa melanoleuca</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Willet</td>
<td>Tringa semipalmata</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Lesser Yellowlegs</td>
<td>Tringa flavipes</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Bonaparte’s Gull</td>
<td>Chroicocephalus philadelphia</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Laughing Gull</td>
<td>Leucophaeus atricilla</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Franklin’s Gull</td>
<td>Leucophaeus pipixcan</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Ring-billed Gull</td>
<td>Larus delawarens</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Forster’s Tern</td>
<td>Sterna forsteri</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Rock Pigeon</td>
<td>Columba livia</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Band-tailed Pigeon</td>
<td>Patagioenas fasciata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Eurasian Collared Dove</td>
<td>Streptopelia decaocto</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Inca Dove</td>
<td>Columbina inca</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Common Ground Dove</td>
<td>Columbina passerina</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>White-tipped Dove</td>
<td>Leptotila verreauxi</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>White-winged Dove</td>
<td>Zenaida asiatica</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Mourning Dove</td>
<td>Zenaida macroura</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Greater Roadrunner</td>
<td>Geococcyx californianus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Yellow-billed Cuckoo</td>
<td>Coccyzus americanus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Black-billed Cuckoo</td>
<td>Coccyzus erythropthalmus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>English name</td>
<td>Scientific name</td>
<td>Spring</td>
<td>Summer</td>
<td>Autumn</td>
<td>Winter</td>
<td>Status</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Barn Owl</td>
<td>Tyto alba</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>Flammulated Owl</td>
<td>Psiloscops flammeolus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Western Screech Owl</td>
<td>Megascops kennicotti</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>Eastern Screech Owl</td>
<td>Megascops asio</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Horned Owl</td>
<td>Bubo virginianus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>Northern Pygmy Owl</td>
<td>Glaucidium gnoma</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Elf Owl</td>
<td>Micrathene whitneyi</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Burrowing Owl</td>
<td>Athene cunicularia</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Long-eared Owl</td>
<td>Asio otus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Short-eared Owl</td>
<td>Asio flammeus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Northern Saw-whet Owl</td>
<td>Aegolius acadicus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Lesser Nighthawk</td>
<td>Chordeiles acutipennis</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Common Nighthawk</td>
<td>Chordeiles minor</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Common Pauraque</td>
<td>Nyctidromus albicollis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Poorwill</td>
<td>Phalaenoptilus nutillii</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Mexican Whip-poor-will</td>
<td>Antrostomus arizonae</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>White-throated Swift</td>
<td>Aeronautes saxatalis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Rivoli’s Hummingbird</td>
<td>Eugenes fulgens</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Blue-throated Hummingbird</td>
<td>Lampornis cleniaceae</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Lucifer Hummingbird</td>
<td>Calothorax lucifer</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Ruby-throated Hummingbird</td>
<td>Archilochus colubris</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Black-chinned Hummingbird</td>
<td>Archilochus alexandri</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Broad-tailed Hummingbird</td>
<td>Selasphorus platyceurus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Rufous Hummingbird</td>
<td>Selasphorus rufus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Calliope Hummingbird</td>
<td>Selasphorus calliope</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Broad-billed Hummingbird</td>
<td>Cynanthus latirostris</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>White-eared Hummingbird</td>
<td>Hylocharis leucotis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Belted Kingfisher</td>
<td>Megaceryle alcyon</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Green Kingfisher</td>
<td>Chloroceryle americana</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Acorn Woodpecker</td>
<td>Melanerpes formicivorus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Golden-fronted Woodpecker</td>
<td>Melanerpes aurifrons</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Williamson’s Sapsucker</td>
<td>Sphyrapicus thyroideus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Yellow-bellied Sapsucker</td>
<td>Sphyrapicus varius</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Red-naped Sapsucker</td>
<td>Sphyrapicus nuchalis</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Ladder-backed Woodpecker</td>
<td>Dryobates scalaris</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Hairy Woodpecker</td>
<td>Dryobates villosus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Ladder-backed × Hairy Woodpecker (hybrid)</td>
<td>Dryobates scalaris × villosus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R?</td>
</tr>
<tr>
<td>Northern Flicker</td>
<td>Colaptes auratus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Crested Caracara</td>
<td>Caracara cheriway</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M?</td>
</tr>
<tr>
<td>American Kestrel</td>
<td>Falco sparverius</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Merlin</td>
<td>Falco columbarius</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Aplomado Falcon</td>
<td>Falco femoralis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Peregrine Falcon</td>
<td>Falco peregrinus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Prairie Falcon</td>
<td>Falco mexicanus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Olive-sided Flycatcher</td>
<td>Contopus cooperi</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Western Wood Pewee</td>
<td>Contopus sordidulus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Eastern Wood Pewee</td>
<td>Contopus virens</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Willow Flycatcher</td>
<td>Empidonax traillii</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Least Flycatcher</td>
<td>Empidonax minimus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>English name</td>
<td>Scientific name</td>
<td>Spring</td>
<td>Summer</td>
<td>Autumn</td>
<td>Winter</td>
<td>Status</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>----------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Hammond’s Flycatcher</td>
<td>Empidonax hammondii</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Grey Flycatcher</td>
<td>Empidonax wrightii</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Dusky Flycatcher</td>
<td>Empidonax oberholseri</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Cordilleran Flycatcher</td>
<td>Empidonax occidentalis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Black Phoebe</td>
<td>Sayornis nigricans</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Eastern Phoebe</td>
<td>Sayornis phoebe</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Say’s Phoebe</td>
<td>Sayornis saya</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Vermilion Flycatcher</td>
<td>Pyrocephalus rubinus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Dusky-capped Flycatcher</td>
<td>Myiarchus tuberculifer</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Ash-throated Flycatcher</td>
<td>Myiarchus cinerascens</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Couch’s Kingbird</td>
<td>Tyrannus couchii</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Cassin’s Kingbird</td>
<td>Tyrannus vociferans</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Western Kingbird</td>
<td>Tyrannus verticalis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Eastern Kingbird</td>
<td>Tyrannus tyrannus</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Scissor-tailed Flycatcher</td>
<td>Tyrannus forficatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Loggerhead Shrike</td>
<td>Lanius ludovicianus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Black-capped Vireo</td>
<td>Vireo atricapilla</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Bell’s Vireo</td>
<td>Vireo bellii</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Grey Vireo</td>
<td>Vireo vicinior</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Hutton’s Vireo</td>
<td>Vireo huttoni</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Blue-headed Vireo</td>
<td>Vireo solitarius</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Plumbeous Vireo</td>
<td>Vireo plumbeus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Warbling Vireo</td>
<td>Vireo gilvus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Red-eyed Vireo</td>
<td>Vireo olivaceus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Steller’s Jay</td>
<td>Cyanocitta stelleri</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Mexican Jay</td>
<td>Aphelocoma wollweberi</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Clark’s Nuthracker</td>
<td>Nucifraga columbiana</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>American Crow</td>
<td>Corvus brachyrhynchos</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>Chihuahuan Raven</td>
<td>Corvus cryptoleucus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Common Raven</td>
<td>Corvus corax</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Horned Lark</td>
<td>Eremophila alpestris</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Northern Rough-winged Swallow</td>
<td>Stelgidopteryx serripennis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Violet-green Swallow</td>
<td>Tachycineta thalassina</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Bank Swallow</td>
<td>Riparia riparia</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Barn Swallow</td>
<td>Hirundo rustica</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Cliff Swallow</td>
<td>Petrochelidon pyrrhonota</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Cave Swallow</td>
<td>Petrochelidon fulva</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
</tr>
<tr>
<td>Black-crested Titmouse</td>
<td>Bacolophus atririctatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Verdin</td>
<td>Auriparus flaviceps</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Bushtit</td>
<td>Psaltriparus minimus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Red-breasted Nuthatch</td>
<td>Sitta canadensis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>HB</td>
</tr>
<tr>
<td>White-breasted Nuthatch</td>
<td>Sitta carolinensis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Pygmy Nuthatch</td>
<td>Sitta pygmaea</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Brown Creeper</td>
<td>Certhia americana</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Rock Wren</td>
<td>Salpinctes obsoletus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Canyon Wren</td>
<td>Catharps mexicanus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>House Wren</td>
<td>Troglydotes aedon</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>House Wren (Brown-throated)</td>
<td>Troglydotes aedon [brunneicollis group]</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>RB</td>
</tr>
<tr>
<td>Marsh Wren</td>
<td>Cistothorus palustris</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>English name</td>
<td>Scientific name</td>
<td>Spring</td>
<td>Summer</td>
<td>Autumn</td>
<td>Winter</td>
<td>Status</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Carolina Wren</td>
<td>Thryothorus ludovicianus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>Bevick's Wren</td>
<td>Thryomanes bewickii</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>Cactus Wren</td>
<td>Campylorhynchus brunneicapillus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>Blue-grey Gnatchatcher</td>
<td>Poliopitla caerulea</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>Black-tailed Gnatchatcher</td>
<td>Poliopitla melanura</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>Golden-crowned Kinglet</td>
<td>Regulus satrapa</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Ruby-crowned Kinglet</td>
<td>Regulus calendula</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Eastern Bluebird</td>
<td>Sialia sialis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Western Bluebird</td>
<td>Sialia mexicana</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Mountain Bluebird</td>
<td>Sialia curruoides</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Townsend's Solitaire</td>
<td>Myadestes townsendi</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Russet Nightingale-Thrush</td>
<td>Catharus occidentalis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>MB?</td>
<td></td>
</tr>
<tr>
<td>Swainson's Thrush</td>
<td>Catharus ustulatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Hermit Thrush</td>
<td>Catharus guttatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>American Robin</td>
<td>Turdus migratorius</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Grey Catbird</td>
<td>Dumetella carolinensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Curve-billed Thrasher</td>
<td>Toxostoma curvirostre</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>Long-billed Thrasher</td>
<td>Toxostoma longirostre</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>Crissal Thrasher</td>
<td>Toxostoma crissale</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>Sage Thrasher</td>
<td>Oreoscoptes montanus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Northern Mockingbird</td>
<td>Minus polyglottos</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>European Starling</td>
<td>Sturnus vulgaris</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>American Pipit</td>
<td>Anthus rubescens</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Cedar Waxwing</td>
<td>Bombycilla cedrorum</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Phainopepla</td>
<td>Phainopepla nitens</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>Olive Warbler</td>
<td>Pencledramus taeantiatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
</tr>
<tr>
<td>Lapland Longspur</td>
<td>Calcarius lapponicus</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Chestnut-collared Longspur</td>
<td>Calcarius ornatus</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Louisiana Waterthrush</td>
<td>Parkesia motacilla</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Black-and-white Warbler</td>
<td>Mnioptila varia</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Orange-crowned Warbler</td>
<td>Oreothlypis celata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Colima Warbler</td>
<td>Oreothlypis crissalis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Nashville Warbler</td>
<td>Oreothlypis ruficapilla</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Virginia’s Warbler</td>
<td>Oreothlypis virginiae</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>MacGillivray’s Warbler</td>
<td>Geothlypis tolmiei</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Common Yellowthroat</td>
<td>Geothlypis trichas</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>American Redstart</td>
<td>Setophaga ruticilla</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Northern Parula</td>
<td>Setophaga americana</td>
<td>x</td>
<td></td>
<td></td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Magnolia Warbler</td>
<td>Setophaga magnolia</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Yellow Warbler</td>
<td>Setophaga petechia</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Black-throated Blue Warbler</td>
<td>Setophaga caerulescens</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Palm Warbler</td>
<td>Setophaga palmarum</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Yellow-rumped Warbler</td>
<td>Setophaga coronata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Yellow-throated Warbler</td>
<td>Setophaga dominica</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Black-throated Grey Warbler</td>
<td>Setophaga nigrescens</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Townsend’s Warbler</td>
<td>Setophaga townsendi</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Golden-cheeked Warbler</td>
<td>Setophaga chrysoparia</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Wilson’s Warbler</td>
<td>Cardellina pusilla</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Red-faced Warbler</td>
<td>Cardellina rubrifrons</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>MB?</td>
<td></td>
</tr>
<tr>
<td>English name</td>
<td>Scientific name</td>
<td>Spring</td>
<td>Summer</td>
<td>Autumn</td>
<td>Winter</td>
<td>Status</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Painted Redstart</td>
<td>Myioborus pictus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Slate-throated Redstart</td>
<td>Myioborus minimus</td>
<td>x</td>
<td></td>
<td>x</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Cassin’s Sparrow</td>
<td>Puscia cassinii</td>
<td>x</td>
<td></td>
<td>x</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Grasshopper Sparrow</td>
<td>Anmodramus savannarum</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Baird’s Sparrow</td>
<td>Centronyx bairdi</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Chipping Sparrow</td>
<td>Spizella passerina</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Clay-coloured Sparrow</td>
<td>Spizella pallida</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Black-chinned Sparrow</td>
<td>Spizella atrorugularis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
<td></td>
</tr>
<tr>
<td>Field Sparrow</td>
<td>Spizella pusilla</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Brewer’s Sparrow</td>
<td>Spizella breviri</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Black-throated Sparrow</td>
<td>Amphispiza bilineata</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
</tr>
<tr>
<td>Lark Sparrow</td>
<td>Chondestes grammacus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
<td></td>
</tr>
<tr>
<td>Lark Bunting</td>
<td>Calamospiza melanocorys</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Fox Sparrow</td>
<td>Passerella iliaca</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Dark-eyed Junco</td>
<td>Junco hyemalis</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Yellow-eyed Junco</td>
<td>Junco phaeonotus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
<td></td>
</tr>
<tr>
<td>White-crowned Sparrow</td>
<td>Zonotrichia leucophrys</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>White-throated Sparrow</td>
<td>Zonotrichia albicollis</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Vesper Sparrow</td>
<td>Poecetes gramineus</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Savannah Sparrow</td>
<td>Passerculus sandwichensis</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Song Sparrow</td>
<td>Melospiza melodia</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Lincoln’s Sparrow</td>
<td>Melospiza lincolnii</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Swamp Sparrow</td>
<td>Melospiza georgiana</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Canyon Towhee</td>
<td>Melozone fusca</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
<td></td>
</tr>
<tr>
<td>Rufous-crowned Sparrow</td>
<td>Amophila ruficeps</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
<td></td>
</tr>
<tr>
<td>Green-tailed Towhee</td>
<td>Pipilo chlorurus</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Spotted Towhee</td>
<td>Pipilo maculatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Yellow-breasted Chat</td>
<td>Icteria virens</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Hepatic Tanager</td>
<td>Piranga flava</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Summer Tanager</td>
<td>Piranga rubra</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Scarlet Tanager</td>
<td>Piranga olibacea</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Western Tanager</td>
<td>Piranga ludoviciana</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Flame-coloured Tanager</td>
<td>Piranga bidentata</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Northern Cardinal</td>
<td>Cardinalis cardinalis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
<td></td>
</tr>
<tr>
<td>Pyrrhuloxia</td>
<td>Cardinalis similus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Rose-breasted Grosbeak</td>
<td>Pheucticus ludovicianus</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Black-headed Grosbeak</td>
<td>Pheucticus melanoecephalus</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Blue Grosbeak</td>
<td>Passerina caerulea</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Lazuli Bunting</td>
<td>Passerina amoena</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Indigo Bunting</td>
<td>Passerina cyanea</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Varied Bunting</td>
<td>Passerina versicolor</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Painted Bunting</td>
<td>Passerina ciris</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Dickcissel</td>
<td>Spiza americana</td>
<td>x</td>
<td></td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Yellow-headed Blackbird</td>
<td>Xanthocephalus xanthocephalus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Western Meadowlark</td>
<td>Sturnella neglecta</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>RB</td>
<td></td>
</tr>
<tr>
<td>Eastern Meadowlark</td>
<td>Sturnella magna</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Orchard Oriole</td>
<td>Icterus spurius</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Hooded Oriole</td>
<td>Icterus cucullatus</td>
<td>x</td>
<td>x</td>
<td></td>
<td>MB</td>
<td></td>
</tr>
<tr>
<td>Bullock’s Oriole</td>
<td>Icterus bullockii</td>
<td>x</td>
<td>x</td>
<td></td>
<td>M</td>
<td></td>
</tr>
</tbody>
</table>
observed every year BRM conducted field work in 2003–13. All observations were made between 1,460 and 2,450 m elevation. The lowest vegetation association was in Cañón Juárez, characterised by scattered pines, juniper and oak. The highest observation was made near Campo Tres, in pine–oak–fir forest. The majority of observations were centred on pine–oak woodlands, and all were made in mid March–early May.

A specimen was collected in 1961 by A. Garza de Leon, former director of the Museo de las Aves in Saltillo, at Rancho las Margaritas, in the Serranías del Burro, adjacent to the Sierra del Carmen (Howell & Webb 1995). He shot it believing it to be a Turkey Vulture *Cathartes aura*. When he reached the downed bird, he was astounded to discover its true identity. The mounted specimen is in the Museo de las Aves collection, and was examined by Clark *et al.* (2006) for their primer on identification.

In 1993 and 1994, Elizabeth Spence de Sellers & BRM observed a pair of Solitary Eagles in the ‘Lobo Pasture’, Serranías del Burro, during bird surveys, including an observation of a pair hunting and one carrying an Eastern Fox Squirrel *Sciurus niger* in its talons. No nest could be located.

Based on these observations, Solitary Eagle might occasionally nest in the Sierra del Carmen, which would represent a significant range extension. In Mexico, the species is listed as Endangered, and the nearest population is in the Sierra Madre Mountains of Chihuahua far to the west (Howell & Webb 1995). There are also recent photo-documented records on eBird from Tamaulipas.

WHITE-TAILED HAWK *Geranoaetus albicaudatus*

On 15 June 2003, JEM observed many at the entrance to Santo Domingo Ranch on the east side of the Sierra del Carmen. In May 2010, one was observed by BRM and a group from US Fish & Wildlife Service, Big Bend National Park, and Rio Grande Joint Venture, flying low over grasslands in the Zacatosa area, near Rancho Los Pilares. It has also been documented on eBird in the vicinity of Múzquiz, as well as in Big Bend National Park and Black Gap Wildlife Management Area.

NORTHERN GOSHAWK *Accipiter gentilis*

R. Wauer documented a nest high in the pine–fir forest of the Sierra del Carmen (Wauer 1992). The species is a resident breeder at the highest elevations, in stands of tall, mature
pine–fir habitat with sheer cliffs bordering open areas, during spring to autumn. In winter the species moves downslope to the lower canyons, particularly the upper Cañón El Alamo, Cañón Fronteriza and Cañón Juárez, which support riparian pine–oak habitat. This is a very isolated population of the species, with the nearest populations in the Sierra Madre Occidental and parts of the south-west USA.

LAUGHING GULL *Leucophaeus atricilla*

Photographs were taken of this species on the landing strip at Los Pilares in 2001. Presa Don Martin near Sabinas, Amistad Lake at Del Rio, and Balmorhea Lake, in Texas, all have resident Laughing Gulls.

WHITE-TIPPED DOVE *Leptotila verreauxi*

Regularly recorded in lower canyons of the sierra, and we found nests in September 2004 and May 2007. Given the relative ease of detection (flushes at close range and calls regularly), it is unlikely to have been missed by Miller (1955). Instead, these new records are probably attributable to range expansion, both locally (McCormack *et al.* 2007) and regionally, possibly as a result of land-use changes (Hogan 1999).

WHITE-WINGED DOVE *Zenaida asiatica*

Seen just once by Miller (1955), we regularly observed it in low-elevation canyons like El Alamo. Like White-tipped Dove, it is probable that the species was indeed rare in the 1950s, and that its modern abundance in the region is a function of recent range expansion (Schwertner *et al.* 2002).

COMMON PURAFAQUE *Nyctidromus albicollis*

Not documented on eBird much further west than Del Rio, Texas, the species was heard calling near Tanque Pilares one evening in early October 2001 by BRM *et al.*

RIVOLI’S HUMMINGBIRD *Eugenes fulgens*

Seen just once by Miller (1955), with a specimen collected by A. Starker Leopold housed at the Berkeley Museum of Vertebrate Zoology (MVZ 129681). We regularly observed it in mid- to high-elevation forests. There are now many eBird records in Big Bend National Park, where it has been known as a breeder for some years (Wauer 1996). On 8 May 2007 a nest was found above Campo Dos. The female was incubating or brooding. The nest was 7 m up in a 17 m-tall conifer, 3 m along a horizontal branch and 60 cm from its tip. At Casa San Isidro, where hummingbird feeders were installed, the species was a daily visitor during spring to early autumn. The surprisingly small number of observations by Miller is hard to explain.

APLOMADO FALCON *Falco femoralis*

Spring and autumn sightings in 2003–05 of a lone bird near Los Pilares. No photographs were taken. Perhaps a vagrant from west of the Sierra del Carmen in adjacent Chihuahua, where there is a breeding population (Moreno-Contreras *et al.* 2015). There are a few eBird records in Big Bend National Park.

EASTERN WOOD PEWEE *Contopus virens*

At least one in the evening of 28 April 2007 at Campo Uno before a heavy thunderstorm passed. At least one was present again the following morning. Identification was based on the vocalisation, which was clear, plaintive and less hoarse than that of Western Wood
Pewee C. sordidulus. The Sierra del Carmen is outside the known regular migration route of the species, although Howell & Webb (1995) mentioned it as a vagrant in adjacent Chihuahua.

DUSKY FLYCATCHER *Empidonax oberholseri*
Mist-netted in Cañón El Alamo on 22 April 2007. Identification confirmed mensurally. There are numerous records in Big Bend National Park on eBird.

DUSKY-CAPPED FLYCATCHER *Myiarchus tuberculifer*
First seen on 30 May 2007, when we observed a pair exploring cavities in various snags around Campo Uno. The species’ unique vocalisations first alerted us to the birds’ probable identity. We later confirmed the identification visually—they were much smaller than the common Ash-throated Flycatcher *M. cinerascens*, the undertail was all grey, and the belly was brighter yellow. Considered a very rare breeder in the Jeff Davis and Chisos Mountains of Texas, and it is probably a regular but rare breeder in the Sierra del Carmen as well. All of our observations relate to the same pair at Campo Uno.

BLACK-CAPPED VIREO *Vireo atricapilla*
Reported by Miller (1955) as fairly common in the lower Boquillas Canyon, where it was found primarily in catclaw *Senegalia greggii*-dominated areas of dense shrubs. Benson & Benson (1990) estimated 6,301 ± 3,162 breeding pairs in the region, and one of us previously documented a comparatively dense population breeding in the Sierra del Carmen (McKinney 1998). At the eastern end of the range, in Cañón Morteros, Black-capped Vireo was abundant in areas of scattered oaks, large boulders and stands of juniper. Singing males were territorial by early April, and several were mist-netted in 2002. They are also found at Cuesta Malena in a habitat comprising scattered oaks, Gregg ash *Fraxinus greggii* and boulders. To the east, in the Serranías del Burro in similar habitat, a large breeding population was documented in 1993–96 (McKinney 1987, McKinney & Sellers 1996).

CLARK’S NUTCRACKER *Nucifraga columbiana*
One was observed by S. Gibert Isern on the road to Campo Dos in 2003. There is also a single eBird record from the Chisos Mountains in Big Bend National Park.

RED-BREASTED NUTHATCH *Sitta canadensis*
Seen on Mesa Bonita and at Campo Tres, high in the mountains in pine–oak–fir forest. Observed in all seasons, but nesting not definitively documented. Three were seen in Ponderosa pine *Pinus ponderosa* at Campo Tres in July 2002. Not considered to be resident in the area, and is only an irregular winter visitor to northern Mexico (Howell & Webb 1995, Delgado-Fernández & Delgadillo-Nuño 2016), and a sporadic visitor in autumn to spring throughout the Trans-Pecos, including Big Bend National Park (Peterson & Zimmer 1998).

RUSSET NIGHTINGALE-THRUSH *Catharus occidentalis*
On 14 May 2007, at c.2,500 m, we heard a *Catharus* singing, but we assumed the song belonged to an odd migrant Hermit Thrush *C. guttatus*. The vegetation in the ravine comprised small deciduous shrubs (e.g., *Physocarpus monogynus*) with a coniferous canopy on the fairly steep, dry slopes above. We heard the same bird singing upon our return to the area on 31 May 2007, and again on 1 June 2007. On 3 June 2007 we returned at 08.05 h with the goal of observing the bird. It was difficult to see, but we noted that the upperparts were dull brown, the breast grey, it had an eye-ring, a bicoloured bill, and the vent was white or
pale grey. The bird sang almost continuously until we left at 10.15 h. We returned on 7 June 2007 and were able to record two brief song bouts using a digital camera (http://www.xeno-canto.org/357625, http://www.xeno-canto.org/357626). A bandpass-filtered version has also been uploaded to Macaulay Library (ML85671051), where the identification was confirmed by reviewers. Near the singing bird, we noted the presence of at least four old nests that resembled those of other Central and South American *Catharus* and *Turdus* species (ETM, H. F. Greeney & V. Rohwer pers. obs.; Fig. 2). We departed the study site on 10 June 2007, and made no further observations of the bird. This site is c.425 km north of the nearest known population, near Monterrey, Nuevo León. While our evidence of breeding is far from conclusive, the large number of nightingale-thrush-like nests in the ravine, and extensive singing throughout the day for 24 days suggests at least a male advertising for a mate.

LAPLAND LONGSPUR *Calcarius lapponicus*
Rare visitor. Observed at the bird feeder at Casa San Isidro. The species has been documented across the Rio Grande in western Texas, in the northern portion of the Trans-Pecos, where it is considered accidental in winter (Peterson & Zimmer 1998).

GOLDEN-CHEEKED WARBLER *Setophaga chrysoparia*
Rare, sightings from Cañón Morteros area, where there is Ashe juniper *Juniperus ashei*, the species’ preferred breeding habitat. A few eBird records exist for Big Bend National Park.
RED-FACED WARBLER *Cardellina rubrifrons*

Seen once, on 12–17 April 2006 (only a single checklist was kept for this period) just downstream of Campo Dos, at the entrance to El Moreno Canyon.

SLATE-THROATED REDSTART *Myioborus miniatus*

Like McCormack *et al.* (2005), who documented a breeding pair near Campo Dos, we found the species to be thinly distributed throughout the narrow drainage from Campo Dos to Campo Tres. Our observations were primarily in May–June.

FLAME-COLOURED TANAGER *Piranga bidentata*

Very rare. Documented just three times in the Sierra del Carmen. Photo-documented on eBird in the Chisos Mountains of Big Bend National Park. Common in the Sierra Santa Rosa, 100 km to the south-east (McCormack *et al.* 2007).

AUDUBON’S ORIOLE *Icterus graduacauda*

Not noted by Miller (1955b), but we found the species to be common throughout the lower western canyons. McCormack *et al.* (2007) also noted it as common in the Sierra Santa Rosa, 100 km to the south-east, and suggested that the failure of previous studies to locate the species in this area might reflect a recent increase in its abundance. While this could be true, there is a specimen from the Sierra del Carmen collected in 1940 at the Perot Museum of Nature and Science in Dallas (PMNS 001444), two specimens taken to the south-east near Sabinas, Coahulla, in 1910, housed at the Field Museum of Natural History, Chicago (FMNH 125181–182), and an audio-recording from the nearby Sierra Encantada in 1983 (Florida Museum Bioacoustic Archive UF Audio 7216). It therefore seems probable that the species has long been present in the region, but might have experienced a more recent increase in abundance. Audubon’s Oriole is resident and its preferred habitat is the lower edge of pine–oak woodlands comprising pine, oak, juniper and yucca. It is also common to the east in the Serranías del Burro (Benson *et al.* 1989).

Discussion

The Sierra del Carmen possesses an interesting avifauna that combines species from several nearby biogeographic regions. Those characteristic of regions to the north and the high mountains of Mexico include Broad-tailed Hummingbird *Selasphorus platycercus*, Cordilleran Flycatcher *Empidonax occidentalis* and Flammulated Owl *Psiloscops flammulois*. Species primarily found further south include Montezuma Quail *Cyrtonyx montezumae*, Common Black Hawk, Solitary Eagle, White-tipped Dove, Rivoli’s Hummingbird, Blue-throated Hummingbird *Lampornis clemenciae*, Dusky-capped Flycatcher, Russet Nightingale-Thrush, Olive Warbler *Peucedramus taeniatus*, Colima Warbler *Oreothlypis crissalis*, Painted Redstart *Myioborus pictus*, Slate-throated Redstart, Yellow-eyed Junco *Junco phaeonotus*, Varied Bunting *Passerina versicolor* and Audubon’s Oriole. Finally, as noted by Miller (1955a,b), certain species are ‘notably lacking’. We confirm the absence of any breeding evidence for chickadees *Poecile* spp., bluebirds *Sialia* spp. or Brown Creeper *Certhia americana*, and likewise corroborate his observation that some species expected to be common based on habitat are absent or almost so during the breeding season: Hairy Woodpecker *Dryobates villosus*, Steller’s Jay *Cyanocitta stelleri*, Plumbeous Vireo *Vireo plumbeus* and Yellow-rumped Warbler *Setophaga coronata*.

Compared to sky islands north of the Sierra Madre Occidental like the Chiricahua Mountains, those north of the Sierra Madre Oriental, of which the Sierra del Carmen is one, are relatively depauperate in tropical bird species. McCormack *et al.* (2007) posed the
question whether the eastern sky islands truly lack such species, or whether the regional list might grow with additional exploration of this comparatively poorly known area. We conclude that while we have added a few southern taxa to the regional list, these isolated mountains are indeed less diverse in tropical species than their western counterpart sky islands. This begs the question of how these tropical species have come to be distributed in the area. Have they dispersed comparatively recently from further south, or are they perhaps relict populations from when more mesic vegetation dominated the region (Metcalfe et al. 2000, McCormack et al. 2007)? Based on genetic evidence from Mexican Jay Aphelocoma ultramarina, many of these species may be relicts of populations that were previously more widespread during glacial maxima when forest was amply distributed (McCormack et al. 2008).

As a sky island, the Sierra del Carmen rises as a beacon of intact, forested landscape within an otherwise sparse corridor of suitable habitat for montane Middle American species shifting north along the Sierra Madre Oriental with climate change (Davis & Shaw 2001, Colwell et al. 2008). Moreover, it harbours a distinctive set of known (McCormack et al. 2008) and presumed genetically distinct populations of otherwise more southerly distributed species. Fortunately, the majority of the region is federally protected and carefully managed, much of it by the international company CEMEX. Rehabilitation efforts of past environmental injuries have been underway for many years, including removal of logging waste and the re-introduction of Bighorn Sheep Ovis canadensis, Pronghorn Antilocapra americana and Elk Cervus canadensis, and the long-term conservation outlook in the Sierra del Carmen appears promising (McKinney & Villalobos 2014).

Acknowledgements

We thank CEMEX for conserving and stewarding land in the Sierra del Carmen, Elena Berg, Erik Peñaloza and Jan Brotman for contributing their observations, and the anonymous reviewers whose input greatly improved this manuscript. We also appreciate the observations by Billy Pat McKinney (Manager El Carmen), Jonas Delgadillo, Feliciano Heredia Pineda and Santiago Gibert Isern who have conducted field work at El Carmen.

References:

© 2018 The Authors; This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Nelson, B. 2002. *God’s country or Devil’s playground: the best nature writing from the Big Bend of Texas*. Univ. of Texas Press, Austin.

Addresses: Eliot T. Miller, Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA, e-mail: etm45@cornell.edu. John E. McCormack, Moore Laboratory of Zoology, Occidental College, Los Angeles, CA 90041, USA. Greg Levandoski, Regalis Environmental LLC, Evergreen, CO 80439, USA. Bonnie R. McKinney, El Carmen Land and Conservation Co., Del Rio, TX 78842, USA.
A price list of birds collected by Alfred Russel Wallace inserted in *The Ibis* of 1863

by Kees Rookmaaker & John van Wyhe

Received 17 August 2018; revised 8 October 2018; published 14 December 2018

http://zoobank.org/urn:lsid:zoobank.org:pub:43B17926-9D7F-4DDC-9B8C-AA556354CBD1

Summary.—Vol. 5 of *The Ibis* (1863) contained four loose inserts advertising specimens for sale by the natural history dealer Samuel Stevens. One of these represents the remaining stock of birds obtained by Alfred Russel Wallace during his expedition to the Malay Archipelago in 1854–62. A total of 246 specimens from eight regions were listed, with prices ranging from three to 20 shillings, plus ten specimens priced at more than £1. The most expensive items were a pair of Standardwing Bird-of-paradise *Semioptera wallacii*, and a fine example of the Twelve-wired Bird-of-paradise *Seleucidis melanoleucus*. Only one copy of this insert is known to survive, because they appear to have been removed when the volumes were bound and preserved. All 246 specimens are listed according to the original print version, with the addition of current scientific and vernacular names.

The naturalist Alfred Russel Wallace (1823–1913) travelled through the Malay Archipelago for eight years, between 1854 and 1862 (van Wyhe 2013). As he stated, his ‘main object of all my journeys was to obtain specimens of natural history, both for my private collection and to supply duplicates to museums and amateurs’ (Wallace 1869, I: xii). Before setting out, he had made an arrangement with Samuel Stevens (1817–99), who had a shop for natural history objects at 24 Bloomsbury Street, London. Wallace would send all of his material to Stevens, who would store those items intended for Wallace’s private collection and endeavour to sell the remaining specimens (Baker 2001).

Although Stevens must have sent out lists of new stock to various collectors, both at home and abroad, knowledge of how much he could charge for specimens of various degrees of rarity or beauty is poor. In fact, it seems that very few of his price lists have survived (one listing insects in Berlin was mentioned by Baker 2001: 256). We have located one interesting printed example, issued just over a year after Wallace’s return from the East, which was widely available at the time but appears to have disappeared from the record.

Advertising in *The Ibis*

In January 1859, the first issue of a new magazine of general ornithology, *The Ibis*, appeared under the editorship of Philip Lutley Sclater (1829–1913), ornithologist and, from 1860, Secretary of the Zoological Society of London. The new journal was quarterly and soon established itself as the major British publication for ornithological research.

The Ibis vol. 4 (1862) contained two undated inserts styled ‘The Naturalist’s Advertiser’ No. I and No. II. These offered ‘a medium whereby Dealers and others having Objects, Apparatus, or Books relating to this Science, to dispose of, may make the same specially known among the class of persons where they are most likely to find purchasers.’ Booksellers paid a small amount to the publishers Trübner & Co. in London. Both known issues of the *Advertiser* had four pages and advertised only zoological books. Strangely, there is no name or address of a bookseller where these copies could be obtained.
Figure 1. The first page of the ‘List of birds from the eastern islands of the Malay Archipelago’ inserted in *The Ibis* of 1863.
The existence of The Naturalist’s Advertiser shows that The Ibis offered the possibility to sellers of natural history books and objects to list their stock. Although the original concept seems to have been discontinued, apparently Stevens took advantage of the possibility, because in vol. 5 of The Ibis (1863) were four loose inserts: (1) ‘List of birds from the Eastern Islands of the Malay Archipelago, for sale at the annexed prices’, pp. 1–4; (2) ‘List of duplicates from Mr. Swinhoe’s collection of Chinese birds’, pp. 1–2; (3) ‘List of duplicates from Mr. Swinhoe’s collection of Formosan birds’, pp. 1–2; (4) ‘List of M. Du Chaillu’s collection of bird-skins from Africa’, pp. 1–2. Only the last of these is dated, April 1863. Therefore these inserts were mailed either with the January (vol. 5, no. 17) or, more likely, the April 1863 (no. 18) issue of The Ibis.

As these were loose inserts advertising specimens, they were rarely preserved. Institutional copies which were bound appear to have removed them as a matter of course. The copies of the 5th volume of The Ibis on major online platforms like the Biodiversity Heritage Library, Archive or Google Books no longer contain the inserts, which therefore seem now to be incredibly rare. No copies were individually catalogued in any library as far as we have been able to ascertain.

The only copy of these inserts known to us is in one of the sets of The Ibis at the Bayerische Staatsbibliothek, Munich (physical copies at signature Zool. 266 m-5) and available online—see Stevens (1863)—in References.

The list of birds from the eastern islands of the Malay Archipelago

As shown in Fig. 1, the document starts with a title and introduction, followed by lists of species by locality. Within the locality, each species or specimen has a number, a scientific name with authority, and a price, printed across two columns. The final page ends with the printer’s details: McGowan and Danks, Great Windmill Street, Haymarket.

In our transcription in Table 1, the localities, numbering, species names and prices are provided exactly as in the original, with all punctuation, in the subheadings (in bold) and three left-hand columns (no., species, price). The last column in the table provides the best fit for current scientific and vernacular name, following nomenclature in the latest version of the Handbook of the birds of the world Alive (del Hoyo et al. 2018).

Discussion

The ‘List of birds from the eastern islands’ was subdivided into eight geographic sections. The species in each section are numbered consecutively (Table 2). In three cases different specimens of the same species are listed individually. In one case, one number relates to a pair (possibly mounted together). Hence Stevens had a stock of at least 246 specimens.

The prices charged by Stevens ranged from three to 240 shillings each, or an average of c.11 shillings per specimen (Table 3). Note that ‘to purchasers of above £25 value, 10 per cent. discount will be allowed’ (Stevens 1863, see Fig. 1). The most expensive items were a Black Lory Chalcopsitta atra (25 shillings), Sula Hanging-parrot Loriculus sclateri (30 shillings), Buru Green-pigeon Treron aromaticus (30 shillings), Yellow-and-green Lorikeet Trichoglossus flavoviridis (40 shillings), Ivory-breasted Pitta Pitta maxima (40 shillings), Golden Myna Minu anais (40 shillings), New Guinea Bronzewing Henicophaes albifrons (40 shillings), Standardwing Bird-of-paradise Semioptera wallacei (200 shillings per pair) and a fine Twelve-wired Bird-of-paradise Seleucidis alba (240 shillings). The most expensive specimen, the Twelve-wired Bird-of-paradise, was certainly rare, although the British Museum subsequently received five specimens collected by Wallace in New Guinea (Sharpe...
<table>
<thead>
<tr>
<th>No.</th>
<th>Transcription of species as listed</th>
<th>Price</th>
<th>Current identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Trichoglossus ornatus. L.</td>
<td>7s.</td>
<td>Ornate Lorikeet Trichoglossus ornatus (Linnaeus, 1758)</td>
</tr>
<tr>
<td>2</td>
<td>Dendrochelidon Wallacii Gould</td>
<td>5s.</td>
<td>Grey-rumped Treeswift Hemiprocne longipennis wallacii (Gould, 1859)</td>
</tr>
<tr>
<td>3</td>
<td>Hemilophus fulvus. Q. & G.</td>
<td>7s.</td>
<td>Ashy Woodpecker Mulleripicus fulves (Quoy & Gaimard, 1830)</td>
</tr>
<tr>
<td>4</td>
<td>Graucalus leucopygius. Bp.</td>
<td>3s.</td>
<td>White-rumped Cuckoo-shrike Coracina leucopygia (Bonaparte, 1850)</td>
</tr>
<tr>
<td>5</td>
<td>Campophaga morio. Mull</td>
<td>3s.</td>
<td>Sulawesi Cicadabird Edolisoma morio (S. Müller, 1843)</td>
</tr>
<tr>
<td>6</td>
<td>Dicrourus pectoralis. Wall. var.</td>
<td>4s.</td>
<td>White-eyed Drongo Dicrurus hottentottus Wallace, 1865</td>
</tr>
<tr>
<td>7</td>
<td>Corvus validus. Bp. var.</td>
<td>8s.</td>
<td>Sulawesi Crow Corvus enca celebes Stresemann, 1936</td>
</tr>
<tr>
<td>8</td>
<td>Diceum celebicum. Mull</td>
<td>5s.</td>
<td>Grey-sided Flowerpecker Dicaem celebicum S. Müller, 1843</td>
</tr>
<tr>
<td>9</td>
<td>Cinnyris frenata. Mull</td>
<td>3s.</td>
<td>Olive-backed Sunbird Cinnyris jugularis plateni (A. W. H. Blasius, 1885)</td>
</tr>
<tr>
<td>10</td>
<td>Acridotheres cinereus. Mull</td>
<td>6s.</td>
<td>Pale-bellied Myna Acridotheres cinereus Bonaparte, 1851</td>
</tr>
<tr>
<td>11</td>
<td>Treron vernans. Gm.</td>
<td>5s.</td>
<td>Pink-necked Green-pigeon Teron vernans Linnaeus, 1771</td>
</tr>
<tr>
<td>12</td>
<td>Treron griseacauda. G.R. Gray</td>
<td>20s.</td>
<td>Grey-cheeked Green-pigeon Teron griseacauda wallacii Salvadori, 1893</td>
</tr>
<tr>
<td>13</td>
<td>Carphophaga radiata. Q. & G.</td>
<td>15s.</td>
<td>Grey-headed Imperial-pigeon Ducula radiata (Quoy & Gaimard, 1830)</td>
</tr>
<tr>
<td>14</td>
<td>Turacaena menadensis. Q. & G.</td>
<td>7s.</td>
<td>White-faced Cuckoo-dove Turaccea menadensis (Quoy & Gaimard, 1830)</td>
</tr>
<tr>
<td>15</td>
<td>Ardea malaccensis. Gm.</td>
<td>4s.</td>
<td>Javan Pond-heron Ardea speciosa (Horsfield, 1821)</td>
</tr>
<tr>
<td>16</td>
<td>Rallus philippensis. L.</td>
<td>4s.</td>
<td>Buff-banded Rail Hypothymis p. philippensis (Linnaeus, 1766)</td>
</tr>
<tr>
<td>17</td>
<td>Forzana phoenicura. Penn.</td>
<td>4s.</td>
<td>White-breasted Waterhen Amaurornis phoenicurus leucomelana (S. Müller, 1842)</td>
</tr>
<tr>
<td>18</td>
<td>Porphyrio smaragdinus. Temm.</td>
<td>7s.</td>
<td>Sunda Swamphen Porphyrio poliocephalus indicus Horsfield, 1821</td>
</tr>
<tr>
<td>19</td>
<td>Paro gallinacoa. Temm.</td>
<td>4s.</td>
<td>Combed-crested Jacana Jacana tibetana Temminck, 1828</td>
</tr>
<tr>
<td>20</td>
<td>Querquedula gibifrons. Mull.</td>
<td>5s.</td>
<td>Sunda Teal Anas gibifrons S. Müller, 1842</td>
</tr>
<tr>
<td>21</td>
<td>Dendrocygna vagans. Eton.</td>
<td>5s.</td>
<td>Wandering Whistling-duck Dendrocygna arcuata (Horsfield, 1824)</td>
</tr>
</tbody>
</table>

SULA Is. (East of Celebes.)

<table>
<thead>
<tr>
<th>No.</th>
<th>Transcription of species as listed</th>
<th>Price</th>
<th>Current identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Platycercus dorsalis. Q. & G. var.</td>
<td>15s.</td>
<td>Moluccan King-parrot Alisterus anboinensis (Linnaeus, 1766)</td>
</tr>
<tr>
<td>2</td>
<td>Loriculus scateri. Wall.</td>
<td>30s.</td>
<td>Sula Hanging-parrot Loriculus scateri Wallace, 1863</td>
</tr>
<tr>
<td>3</td>
<td>Trichoglossus flavivirdis Wall.</td>
<td>40s.</td>
<td>Yellow-and-green Lorikeet Trichoglossus flavivirdis Wallace, 1863</td>
</tr>
<tr>
<td>4</td>
<td>Halcyon melanorhyncha. Temm.</td>
<td>15s.</td>
<td>Black-billed Kingfisher Pelargopsis melanorhyncha (Temminck, 1826)</td>
</tr>
<tr>
<td>5</td>
<td>Halcyon collaris. Sw.</td>
<td>4s.</td>
<td>Collared Kingfisher Todiramphus chloris (Boddaert, 1783)</td>
</tr>
<tr>
<td>6</td>
<td>Dendrochelidon wallacei. Gould</td>
<td>6s.</td>
<td>Grey-rumped Treeswift Hemiprocne longipennis wallacii (Gould, 1859)</td>
</tr>
<tr>
<td>7</td>
<td>Merop somatus. [sic] Lath.</td>
<td>3s.</td>
<td>Rainbow Bee-eater Merops ornatus Linnaeus, 1766</td>
</tr>
<tr>
<td>8</td>
<td>Criniger longirostris. Wall.</td>
<td>10s.</td>
<td>Sula Golden Bulbul Thaprielas longirostris Wallace, 1863</td>
</tr>
<tr>
<td>9</td>
<td>Oriolus frontalis. Wall.</td>
<td>20s.</td>
<td>Black-naped Oriole Oriolus chinensis frontalis Wallace, 1863</td>
</tr>
<tr>
<td>10</td>
<td>Artamus monachus. Bp.</td>
<td>20s.</td>
<td>Ivory-backed Woodswallow Artamus monachus Bonaparte, 1850</td>
</tr>
<tr>
<td>11</td>
<td>Myiagra puella. Wall.</td>
<td>10s.</td>
<td>Pale-blue Monarch Hypothymis puella (Wallace, 1863)</td>
</tr>
</tbody>
</table>

SULA Is. (East of Celebes.) – Continued.

<table>
<thead>
<tr>
<th>No.</th>
<th>Transcription of species as listed</th>
<th>Price</th>
<th>Current identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Monarcha cinerascens. Temm.</td>
<td>4s.</td>
<td>Island Monarch Monarcha cinerascens (Temminck, 1827)</td>
</tr>
<tr>
<td>13</td>
<td>Pachycephala chio. Wall.</td>
<td>10s.</td>
<td>Golden Whistler Pachycephala pectoralis chio Wallace, 1863</td>
</tr>
<tr>
<td>14</td>
<td>Dicrourus pectoralis. Wall.</td>
<td>10s.</td>
<td>Sula Drongo Dicrurus ruffetottus pectoralis Wallace, 1863</td>
</tr>
<tr>
<td>15</td>
<td>Nectarina auriceps. G.R. G.</td>
<td>5s.</td>
<td>Black Sunbird Leptocoma aspasia auriceps (G. R. Gray, 1861)</td>
</tr>
<tr>
<td>16</td>
<td>Corvus validus. Bp. var.</td>
<td>8s.</td>
<td>Slender-billed Crow Corvus enca mangoli Vaurie, 1958</td>
</tr>
<tr>
<td>17</td>
<td>Calornis obscura. Forst.</td>
<td>3s.</td>
<td>Moluccan Starling Aplonis myodens (G. R. Gray, 1862)</td>
</tr>
<tr>
<td>No.</td>
<td>Transcription of species as listed</td>
<td>Price</td>
<td>Current identification</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>-------</td>
<td>------------------------</td>
</tr>
<tr>
<td>18</td>
<td>Treron griseicauda. G.R. Gray</td>
<td>20s</td>
<td>Grey-cheeked Green-pigeon Treron griseicauda wallacei (Salvadori, 1893)</td>
</tr>
<tr>
<td>19</td>
<td>Ptilonopus melancephalus. L. var</td>
<td>8s</td>
<td>Black-naped Fruit-dove Ptilonopus melanospilus banguenessis A. B. Meyer, 1891</td>
</tr>
<tr>
<td>20</td>
<td>Carpophaga luctuosa. Temm.</td>
<td>15s</td>
<td>White Imperial-pigeon Ducula luctuosa (Temminck, 1824)</td>
</tr>
<tr>
<td>21</td>
<td>Carpophaga paulina. Temm.</td>
<td>15s</td>
<td>Green Imperial-pigeon Ducula aenea paulina Bonaparte, 1854</td>
</tr>
<tr>
<td>22</td>
<td>Macropygia albicapilla. Bp.</td>
<td>10s</td>
<td>Slender-billed Cuckoo-dove Macropygia amboinensis albicapilla Bonaparte, 1854</td>
</tr>
<tr>
<td>23</td>
<td>Turacoena menadensis. Q. & G.</td>
<td>8s</td>
<td>White-faced Cuckoo-dove Turacoena manadensis (Quoy & Gaimard, 1830)</td>
</tr>
</tbody>
</table>

BOURU (Moluccas).

2. [Geoffroyus personatus.] *female*
3. Tanysiptera galatea nais
4. Eos rubra. Gm.
12. Rhipidura bouruensis. Wall.
15. Mimeta bouruensis. Q. & G.
17. Nectarina proserpina. Wall.
19. Treron aromaticum (Gm.) ("Colomba viridis amboinensis." Briss.)
20. Ptilonopus viridis. L.
23. Macropygia amboinensis. L.
24. Megapodius forsteni. G.R. Gray
25. Podiceps tricolor. G.R. Gray

CERAM.

1. Aprosmictus amboinensis. L.
2. Lorus domicella. L.
3. Eclectus purpureus. Gm.
4. Cacatua moluccensis. Gm. (fine)
6. Tanysiptera nais. G. R. Gray
10. Trichoglossus cyanogrammus Wagl.
11. Treron aromatica (Gm.) ("Alisterus amboinensis." Briss.)
12. Dicrourus bracteatus buruensis. L.
13. Ptilonopus melanospilus bangueyensis
14. Pachycephala clio buruensis. L.
15. Eurasian Tree-crested Fruit-dove *Pachycephala pectoralis buruensis* E. J. O. Hartert, 1899
16. Spangled Drongo *Dicrurus bracteatus buruensis* E. J. O. Hartert, 1919
17. Buru Dwarf-kingfisher *Ceyx cajeli Wallae*, 1863
18. Buru Fantail *Rhipidura bouruensis* Wallace, 1863
19. Golden Whistler *Pachycephala pectoralis buruensis* E. J. O. Hartert, 1899
20. Buru Oriental Kingfisher *Alisterus amboinensis* (Quoy & Gaimard, 1830)
22. Olive-backed Sunbird *Cinnyris jugularis buruensis* E. J. O. Hartert, 1910
23. Buru Green-pigeon *Treron aromaticus* (J. F. Gmelin, 1789)
24. Moluccan King-parrot *Alisterus amboinensis* (Linnaeus, 1766)
25. Pied Imperial-pigeon *Ducula bicolor* (Scopoli, 1786)
26. Spectacled Imperial-pigeon *Ducula perspicillata* (Temminck, 1824)
27. Slender-billed Cuckoo-dove *Macropygia amboinensis* (Linnaeus, 1766)
28. Forsten’s Scrub-fowl *Megapodius freycinet buruensis* Stresemann, 1914
29. Tricolored Grebe *Tachybaptus ruficollis tricolor* (G. R. Gray, 1861)

© 2018 The Authors; This is an open-access article distributed under the terms of the [Creative Commons Attribution-NonCommercial Licence](https://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
9. Pachycephala macrorhyncha. Gm. 8s.
11. Tropidornyrhynchos subornatus. Temm. 15s.
13. Ptilonopus superb. Temm. 7s.
15. Numenius minor. Mull. 3s.

GILLOLO, BATCHIAN, & MORTY Is.

1. Tanygnathus macrorhyncha. Gm. 15s.
3. Ectucus polyclor. Scop. 15s.
4. Loris garrulus. L. 12s.
5. Eos riciniata. Bechst. 7s.
6. Trichoglossus placentius. Temm. 7s.
8. Tinnunculus moluccensis. Temm. 8s.
10. Halcyon diops. Temm. 6s.
12. Ceyx lepida. Temm. 10s.
15. Centropus goliath. Forst. 20s.
17. Pitta maxima. Forst. 40s.
19. Criniger simplex. Wall. 7s.
25. Pachycephala mentalis. Wall. 10s.
27. Lalage aurea. Temm. 5s.
30. Tropidornyrhynchos fuscicapillus. Wall. 12s.
31. Anthochaera senex G.R. Gray 10s.
32. Corvus validissimus. Schleg. 20s.
33. Lycomorpha morotensis. Schleg. 20s.
34. Semioptera wallacei. G.R. Gray (pair) 200s.
34a. [Semioptera wallacei] female or Juv. 20s.

Price Current identification
9. Moluccan Whistler Pachycephala macrorhyncha Strickland, 1849
10. Violet Crow Corvus violaceus Bonaparte, 1850
11. Seram Friarbird Philemon subornatus (Hombron & Jacquinot, 1841)
12. Moluccan Starling Aplonis myosotis (G. R. Gray, 1862)
13. Eastern Superb Fruit-dove Ptilonopus superb (Temminck, 1810)
14. Black Bittern Ixobrychus flavidollus australis (Lesson, 1831)
15. Little Curlew Numenius minutus Gould, 1841

GILLOLO, BATCHIAN, & MORTY Is. – Continued.

30. Dusky Friarbird Philemon fuscicapillus (Wallace, 1862)
31. White-streaked Friarbird Melitograis galatea (Temminck, 1824)
32. Long-billed Crow Corvus validus Bonaparte, 1850
33. Halmahera Paradise-crow Lycomorpha pyrrhopterus (Bonaparte, 1850)
34. Standardwing Bird-of-paradise Semioptera wallacei G. R. Gray, 1859
34a. Standardwing Bird-of-paradise Semioptera wallacei G. R. Gray, 1859
<table>
<thead>
<tr>
<th>No.</th>
<th>Transcription of species as listed</th>
<th>Price</th>
<th>Current identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td>Calornis obscura. Forst.</td>
<td>3s.</td>
<td>Moluccan Starling Aplonis myosolepis (G. R. Gray, 1862)</td>
</tr>
<tr>
<td>36</td>
<td>Erythura modesta. Wall.</td>
<td>10s.</td>
<td>Blue-faced Parrot Erythura trichra modesta Wallace, 1862</td>
</tr>
<tr>
<td>37</td>
<td>Ptilonopos ogaster. Wagl.</td>
<td>10s.</td>
<td>Grey-headed Fruit-dove Ptilonopus hygoastrus Temminck, 1824</td>
</tr>
<tr>
<td>38</td>
<td>Ptilonopos monachus. Temm.</td>
<td>8s.</td>
<td>Blue-capped Fruit-dove Ptilonopos monacha (Temminck, 1824)</td>
</tr>
<tr>
<td>39</td>
<td>Nycticorax caledonicus. Gm.</td>
<td>10s.</td>
<td>Rufous Night-heron Nycticorax caledonicus australasiae (Vieillot, 1823)</td>
</tr>
<tr>
<td>40</td>
<td>Todorma radjah. Less.</td>
<td>5s.</td>
<td>Radjah Shelduck Radjah radjah (Lesson, 1828)</td>
</tr>
</tbody>
</table>

NEW GUINEA, and the ISLANDS of WAIGIOU, MYSOL, and SALWATTY.

1. *Aprosmictus dorsalis*. Q. & G. 15s. Moluccan King-parrot *Aprosmictus amboinensis dorsalis* (Quoy & Gaimard, 1830)
2. *Eclectus linnaei*. Wagl. 12s. Eclectus Parrot *Eclectus roratus* (Statius Müller, 1776)
3. *Geoffroyus pucherani*. Bp. 8s. Red-cheeked Parrot *Geoffroyus geoffroyi pucherani* Souané, 1856
4. *Cyclopsitta desmaresti*. Garn. 15s. Large Fig-parrot *Psittaculirostris desmarestii* (Desmarest, 1826)
5. *Cyclopsitta diopthalma*. H. and J. 12s. Double-eyed Fig-parrot *Cyclopsitta diopthalma* (Homborn & Jacquinot, 1841)
7. *Chalcospitsa atra* (Scop.) 25s. Black Lory *Chalcospitsa atra* (Scopoli, 1786)
9. *Cacatua equatorialis*. Temm. 10s. Yellow-crested Cockatoo *Cacatua sulphurea* (J. F. Gmelin, 1788)
12. *Halcyon albicilla*. Less. 15s. Collared Kingfisher *Halcyon sancta* Vig. & H., 1827
13. *Halcyon sancta*. Vig. & H. 4s. Sacred Kingfisher *Todiramphus sanctus* (Vigors & Horsfield, 1827)
16. *Alcippe murina*. Mull. 5s. Rusty Mouse-warbler *Crateroscelis murina* (P. L. Sclater, 1858)
17. *Pitta mackloti*. Temm. 15s. Papuan Pitta *Pitta mackloti* Temminck, 1834
22. *Rhipidura gularis*. Mull. 5s. Northern Fantail *Rhipidura isura gularis* S. Müller, 1843
24. *Rhipidura tricolor*. Viell. 3s. Willie Wagtail *Rhipidura leucophrys* (Latham, 1801)
25. *Monarcha chrysomela*. Garn. 15s. Golden Monarch *Carterornis chrysomela* (Lesson & Garnot, 1827)
26. *Monarcha telescophalma*. Garn. 6s. Flrilled Monarch *Arses telescophalbus* (Lesson & Garnot, 1827)
27. *Monarcha dichroa*. G. R. Gray 7s. Hooded Monarch *Symposiachrus manadensis* (Quoy & Gaimard, 1830)
30. *Campephaga melas*. Mull. 10s. Black Cieadabird *Edolisoma melas* (Lesson, 1827)
31. *Campephaga plumbea*. Mull. 6s. Slender-billed Cieadabird *Edolisoma tenuirostre muellerii* (Salvadori, 1876)
34. *Artamus papuensis*. Bp. 4s. White-breasted Woodswallow *Artamus leucoryn leuropgialis* Gould, 1842
35. *Dicrurus carbonarius*. Mull. 4s. Papuan Drongo *Dicrurus bracteatus carbonarius* Bonaparte, 1850

© 2018 The Authors; This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
<table>
<thead>
<tr>
<th>No.</th>
<th>Transcription of species as listed</th>
<th>Price</th>
<th>Current identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>36.</td>
<td>Rectes streptans. Jacq. and Puch.</td>
<td>6s.</td>
<td>Rusty Pitohui Pseudeorectes ferrugineus (Bonaparte, 1850)</td>
</tr>
<tr>
<td>40.</td>
<td>Myiolestes megargynthys. Q. and G.</td>
<td>5s.</td>
<td>Rufous Shrike-thrush Colluricincla megargyntha (Quoy & Gaimard, 1830)</td>
</tr>
<tr>
<td>42.</td>
<td>Myiolestes aruensis. G.R. G.</td>
<td>7s.</td>
<td>Rufous Shrike-thrush Colluricincla megargyntha aruensis (G. R. Gray, 1858)</td>
</tr>
<tr>
<td>43.</td>
<td>Seleucides alba. Blum. (fine)</td>
<td>240s.</td>
<td>Twelve-wired Bird-of-paradise Seleucides melanoleucus (Daudin, 1800)</td>
</tr>
<tr>
<td>44.</td>
<td>Nectarina aspasia. Less.</td>
<td>4s.</td>
<td>Black Sunbird Leptocoma aspasia (Lesson & Garnot, 1828)</td>
</tr>
<tr>
<td>45.</td>
<td>Nectarina zenobia. Less.</td>
<td>4s.</td>
<td>Sahul Sunbird Cinnyris jugularis frenatus (S. Müller, 1843)</td>
</tr>
<tr>
<td>46.</td>
<td>Nectarina eques. Less.</td>
<td>6s.</td>
<td>Ruby-throated Myzomela Myzomela eques (Lesson & Garnot, 1827)</td>
</tr>
<tr>
<td>47.</td>
<td>Arachnothera novoeguinae. Less.</td>
<td>4s.</td>
<td>Yellow-bellied Longbill Toxorhamphus novoeguinae (Lesson, 1827)</td>
</tr>
<tr>
<td>48.</td>
<td>Prionochilus niger. Less.</td>
<td>4s.</td>
<td>Black Berryecker Melanocharis nigra (Lesson, 1830)</td>
</tr>
<tr>
<td>49.</td>
<td>Pilolis similis. Homb. & Jacq.</td>
<td>4s.</td>
<td>Mimic Honeyeater Microptilotis analogus (Reichenbach, 1852)</td>
</tr>
<tr>
<td>50.</td>
<td>Pilolis flavivent. Less.</td>
<td>7s.</td>
<td>Tawny-breasted Honeyeater Xanthotis flavivent (Lesson, 1828)</td>
</tr>
<tr>
<td>52.</td>
<td>Pilolit is megargynthys. G.R. G.</td>
<td>6s.</td>
<td>Long-billed Honeyeater Melistestes megargyntha (G. R. Gray, 1858)</td>
</tr>
<tr>
<td>54.</td>
<td>Cricatus personatus. Temm.</td>
<td>5s.</td>
<td>Hooded Butcherbird Cricatus cassinus (Boddaert, 1783)</td>
</tr>
<tr>
<td>55.</td>
<td>Manucodia atra. Less.</td>
<td>7s.</td>
<td>Glossy-mantled Manucode Manucodia ater (Lesson, 1830)</td>
</tr>
<tr>
<td>56.</td>
<td>Manucodia keraudreni. Less. not fine</td>
<td>20s.</td>
<td>Trumpet Manucode Phonogrammus keraudrenii (Lesson & Garnot, 1826)</td>
</tr>
<tr>
<td>59.</td>
<td>Gracula dumontii. Less.</td>
<td>15s.</td>
<td>Yellow-faced Myna Mino dumontii Lesson, 1827</td>
</tr>
<tr>
<td>60.</td>
<td>Gracula pectoralis. Wall.</td>
<td>40s.</td>
<td>Golden Myna Mino anais (Lesson, 1839)</td>
</tr>
<tr>
<td>61.</td>
<td>Centrobus [sic] menebiki. Garm.</td>
<td>12s.</td>
<td>Ivory-billed Coucal Centrobus menebiki Lesson & Garnot, 1828</td>
</tr>
<tr>
<td>62.</td>
<td>Ptilonopus pulchellus. Temm.</td>
<td>7s.</td>
<td>Beautiful Fruit-dove Ptilonopus pulchellus (Temminck, 1835)</td>
</tr>
<tr>
<td>63.</td>
<td>Carphophaga sundevalii. Bp.</td>
<td>10s.</td>
<td>Spice Imperial-pigeon Ducula myristicivora (Scopoli, 1786)</td>
</tr>
<tr>
<td>64.</td>
<td>Carphophaga pinon. Q. & G.</td>
<td>7s.</td>
<td>Pinon Imperial-pigeon Ducula pinon (Quoy & Gaimard 1824)</td>
</tr>
<tr>
<td>65.</td>
<td>Carphophaga zoeeo. Less.</td>
<td>15s.</td>
<td>Zoe’s Imperial-pigeon Ducula zoeeo (Desmarest, 1826)</td>
</tr>
<tr>
<td>66.</td>
<td>Carphophaga rufigastra. Q. & G.</td>
<td>7s.</td>
<td>Purple-tailed Imperial-pigeon Ducula rufigastra (Quoy & Gaimard 1830)</td>
</tr>
<tr>
<td>67.</td>
<td>Carphophaga puella. Less.</td>
<td>10s.</td>
<td>Wompoo Fruit-dove Megaloprepia magnifica puella (Lesson, 1827)</td>
</tr>
<tr>
<td>69.</td>
<td>Chalcophas stephani. H. & J.</td>
<td>7s.</td>
<td>Stephan’s Dove Chalcophas stephani Pucheran, 1853</td>
</tr>
<tr>
<td>71.</td>
<td>Megapodius reinwardti. Wagl.</td>
<td>15s.</td>
<td>Orange-footed Scrubfowl Megapodius reinwardti Dumont, 1823</td>
</tr>
<tr>
<td>72.</td>
<td>Totanus empusa. Gould.</td>
<td>3s.</td>
<td>Common Sandpiper Actitis hypoleucos (Linnaeus, 1758)</td>
</tr>
<tr>
<td>73.</td>
<td>Botaurs heliostyla. Less.</td>
<td>20s.</td>
<td>Forest Bittern Zonornis heliolius (Lesson & Garnot, 1828)</td>
</tr>
</tbody>
</table>

TIMOR.

1. Aprosmictus vulneratus. Temm. | 12s. | Olive-shouldered Parrot *Aprosmictus jonquilsaceus* (Vieillot, 1818) |
3. Trichoglossus euteles. Temm. | 8s. | Olive-headed Lorikeet *Trichoglossus euteles* (Temminck, 1835) |
4. Trichoglossus iris. Temm. | 15s. | Iris Lorikeet *Psitteuteles iris* (Temminck, 1835) |
<table>
<thead>
<tr>
<th>No.</th>
<th>Transcription of species as listed</th>
<th>Price</th>
<th>Current identification</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Cacatua sulphurea. Gm.</td>
<td>6s</td>
<td>Yellow-crested Cockatoo Cacatua sulphurea varvula (Bonaparte, 1850)</td>
</tr>
<tr>
<td>6</td>
<td>Accipiter cruentus. Gould.</td>
<td>6s</td>
<td>Brown Goshawk Accipiter fasciatus hellmayri Stresemann, 1922</td>
</tr>
<tr>
<td>7</td>
<td>Merops javanicus. Horsf.</td>
<td>3s</td>
<td>Blue-tailed Bee-eater Merops philippinus javanicus Horsfield, 1821</td>
</tr>
<tr>
<td>[p.4]</td>
<td>TIMOR. – Continued.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Cuculus canoroideis. Mull.</td>
<td>4s</td>
<td>Oriental Cuckoo Cuculus saturatus optatus Gould, 1845</td>
</tr>
<tr>
<td>9</td>
<td>Centropus medius. Mull.</td>
<td>3s</td>
<td>Lesser Coucal Centropus bengalensis medius Bonaparte, 1850</td>
</tr>
<tr>
<td>10</td>
<td>Motacilla flavescens. Shaw</td>
<td>3s</td>
<td>Grey Wagtail Motacilla cinerea Tunstall, 1771</td>
</tr>
<tr>
<td>11</td>
<td>Saxicola luctuosa. Mull.</td>
<td>4s</td>
<td>White-bellied Bushchat Saxicola gutturalis (Vieillot, 1818)</td>
</tr>
<tr>
<td>12</td>
<td>Pratincola caprata. L.</td>
<td>3s</td>
<td>Pied Bushchat Saxicola caprata pyrrhonotus (Vieillot, 1818)</td>
</tr>
<tr>
<td>13</td>
<td>Artamus perspicillatus. Temm.</td>
<td>5s</td>
<td>Black-faced Woodswallow Artamus cinereus perspicillatus Bonaparte, 1850</td>
</tr>
<tr>
<td>14</td>
<td>Hirundo nigricans. Viell.</td>
<td>3s</td>
<td>Tree Martin Petrochelidon nigricans (Vieillot, 1817)</td>
</tr>
<tr>
<td>15</td>
<td>Monarcha trivirgata. Temm.</td>
<td>4s</td>
<td>Spectated Monarch Symposiachrus trivirgata (Temminck, 1826)</td>
</tr>
<tr>
<td>16</td>
<td>Rhipidura ochrogastra. Mull.</td>
<td>5s</td>
<td>Northern Fantail Rhipidura rufiventris (Vieillot, 1818)</td>
</tr>
<tr>
<td>17</td>
<td>Rhipidura semicollaris. Mull.</td>
<td>4s</td>
<td>Arafura Fantail Rhipidura drues Gould, 1843</td>
</tr>
<tr>
<td>18</td>
<td>Cyornis hyacinthinus. Temm.</td>
<td>5s</td>
<td>Timor Blue-flycatcher Cyornis hyacinthinus (Temminck, 1820)</td>
</tr>
<tr>
<td>19</td>
<td>Pachycephala calliope. Mull.</td>
<td>7s</td>
<td>Timor Whistler Pachycephala macrorhyncha calliope Bonaparte, 1850</td>
</tr>
<tr>
<td>20</td>
<td>Pachycephala orpheus. Jard.</td>
<td>5s</td>
<td>Fawn-breasted Whistler Pachycephala orpheus Jardine, 1849</td>
</tr>
<tr>
<td>21</td>
<td>Sphecothera viridis. Q. & G.</td>
<td>7s</td>
<td>Timor Figbird Sphecothera viridis (Vieillot, 1816)</td>
</tr>
<tr>
<td>22</td>
<td>Dicrourus densus. Temm.</td>
<td>4s</td>
<td>Timor Drongo Dicrurus densus Bonaparte, 1850</td>
</tr>
<tr>
<td>23</td>
<td>Graucalus personatus. Mull.</td>
<td>7s</td>
<td>Wallacean Cuckooshrike Coracina persona (S. Müller, 1843)</td>
</tr>
<tr>
<td>24</td>
<td>Campephaga plumbea. Mull.</td>
<td>5s</td>
<td>Slender-billed Cicadabird Edolisoma tenuirostre timoriense (Sharpe, 1878)</td>
</tr>
<tr>
<td>25</td>
<td>Lalage timoriensis. Mull.</td>
<td>3s</td>
<td>Slender-billed Cicadabird Edolisoma tenuirostre timoriense (Sharpe, 1878)</td>
</tr>
<tr>
<td>26</td>
<td>Lanius schah. L.</td>
<td>3s</td>
<td>Sunda Long-tailed Shrike Lanius schah bentut Horsfield, 1821</td>
</tr>
<tr>
<td>27</td>
<td>Tropicorhynchus cinereus. Mull.</td>
<td>5s</td>
<td>Timor Friarbird Phileornis inornatus (G. R. Gray, 1846)</td>
</tr>
<tr>
<td>28</td>
<td>Ptilotis reticulata. Mull.</td>
<td>4s</td>
<td>Streak-breasted Honeyeater Microptilotis reticulata (Temminck, 1820)</td>
</tr>
<tr>
<td>29</td>
<td>Ptilotis maculata. Mull. (poor)</td>
<td>3s</td>
<td>Streaky-breasted Honeyeater Microptilotis reticulata (Temminck, 1820)</td>
</tr>
<tr>
<td>30</td>
<td>Deceum [sic] maklotii. Mull.</td>
<td>4s</td>
<td>Red-chested Flowerpecker Dicaeum maklotii Lesson, 1830</td>
</tr>
<tr>
<td>31</td>
<td>Nectarinae solari. Temm.</td>
<td>5s</td>
<td>Flame-breasted Sunbird Cinnyris solari Temminck, 1825</td>
</tr>
<tr>
<td>32</td>
<td>Calornis minor. Temm.</td>
<td>5s</td>
<td>Short-tailed Starling Aplonis minor (Bonaparte, 1851)</td>
</tr>
<tr>
<td>33</td>
<td>Estrelda purifica. Horsf. (sar.)</td>
<td>4s</td>
<td>Yellow-bellied Avadavat Amandava amandava flaviventris Wallace, 1864</td>
</tr>
<tr>
<td>34</td>
<td>Amadina insularis. Wall.</td>
<td>5s</td>
<td>Timor Zebra Finch Taeniopygia guttata (Vieillot, 1817)</td>
</tr>
<tr>
<td>35</td>
<td>Carphophaga rosacea. Temm.</td>
<td>12s</td>
<td>Pink-headed Imperial-pigeon Ducula rosacea (Temminck, 1836)</td>
</tr>
<tr>
<td>36</td>
<td>Turacaena modesta. Temm.</td>
<td>15s</td>
<td>Black Cuckoo-dove Turacaena modesta (Temminck, 1835)</td>
</tr>
<tr>
<td>37</td>
<td>Turtur tigrina. Temm.</td>
<td>4s</td>
<td>Eastern Spotted Dove Streptopelia chinensis tigrina (Temminck, 1810)</td>
</tr>
<tr>
<td>38</td>
<td>Geopelia maugui. Temm.</td>
<td>5s</td>
<td>Barred Dove Geopelia maugui (Temminck, 1809)</td>
</tr>
<tr>
<td>39</td>
<td>Chalcothrips timoriensis. Bp.</td>
<td>10s</td>
<td>Brown-capped Emerald-dove Chalcothrips longirostris timoriensis Bonaparte, 1856</td>
</tr>
<tr>
<td>40</td>
<td>Charadrius longipes. Temm.</td>
<td>3s</td>
<td>Pacific Golden-plover Pluvialis fulva (J. F. Gmelin, 1789)</td>
</tr>
<tr>
<td>41</td>
<td>Scolopax horfieldi. G.R. Gray.</td>
<td>7s</td>
<td>Pintail Snipe Gallinago stenura (Bonaparte, 1831)</td>
</tr>
<tr>
<td>42</td>
<td>Himantopus leucocephalus. Gould.</td>
<td>5s</td>
<td>Black-winged Stilt Himantopus himantopus leucocephalus Gould, 1837</td>
</tr>
<tr>
<td>43</td>
<td>Dendrocygna vagans. Eyton.</td>
<td>5s</td>
<td>Wandering Whistling-duck Dendrocygna arcuata (Horsfield, 1824)</td>
</tr>
<tr>
<td>44</td>
<td>Querqueula gibbifrons. Mull.</td>
<td>5s</td>
<td>Sunda Teal Anas gibbifrons S. Müller, 1842</td>
</tr>
</tbody>
</table>

TIMOR LAUT.

1. Eos cyanosatria. Bp. (poor skin) | 10s | Blue-streaked Lory Eos reticulata S. Müller, 1841

© 2018 The Authors; This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ISSN-2513-9894 (Online)
If all stock had been sold at the undiscounted price, the revenue would have been £137 and 13 shillings.

This list with prices for individual species is remarkable, as so few other examples are known. Wallace (1905: 360) was happy with the proceeds of the journey, which amounted to £300 for each of the eight years of travel. However, for another specimen of *Semioptera wallacei*, Stevens asked £20 in 1859 (Baker 2001: 257).

It is probable that this list contained all birds remaining in stock from Wallace’s collecting expedition. It provides a welcome glimpse into the sale of natural history specimens in the 1860s.

References:

Stevens, S. [1863.] List of birds from the eastern islands of the Malay Archipelago. Loose insert in some copies of Ibis 5(17 or 18). [Available at https://opacplus.bsb-muenchen.de/metaopac/singleHit.do?methodToCall=showHit&curPos=154&identifier=100_SOLR_SERVER_1608822777&showFulltextFirstHit=true]

Addresses: Kees Rookmaaker, National University of Singapore, Dept. of Biological Sciences, 16 Science Drive 4, Singapore 117558, e-mail: rhinorrc@gmail.com. John van Wyhe, National University of Singapore, Dept. of Biological Sciences, 16 Science Drive 4, Singapore 117558, e-mail: dbsjmvw@nus.edu.sg.
The generic taxonomy of the Australian Magpie and Australo-Papuan butcherbirds is not all black-and-white

by Martin Cake, Andrew Black & Leo Joseph

Received 19 August 2018; revised 15 October 2018; published 14 December 2018

Summary.—Recent phylogenetic analyses showing that Australian Magpie and Black Butcherbird are sister taxa and together comprise the sister group of other Australo-Papuan butcherbirds have justified an expanded Cracticus. This treatment reflects earlier arguments that Australian Magpie’s distinctive traits are simply adaptations to terrestrialism and not a sound basis for recognition of a monotypic Gymnorhina. Acknowledging the expediency of a broad Cracticus, we reviewed data from anatomy, plumage, nidification and voice to reassess the optimal number of genera for the group, in particular whether Melloria is warranted for Black Butcherbird. Australian Magpie has multiple unique traits, including many without obvious adaptive significance for terrestrial foraging or open habitat. It shares with Black Butcherbird glossy black plumage, long tarsus and deep temporal fossa, and short currawong-like calls. Black Butcherbird’s rounded wing is possibly adaptive for closed-forest habitats. We recommend use of Gymnorhina, Melloria and Cracticus to represent this evolutionary diversity within the butcherbird-magpie clade.

The Australo-Papuan butcherbirds and Australian Magpie are usually grouped at family or subfamily rank, Cracticidae or Cracticinae, within a broader assemblage of birds including the woodswallows Artamus spp., currawongs Strepera spp., and enigmatic New Guinean peltops Peltops spp. Notwithstanding some views to the contrary (e.g., Johnstone & Storr 2004), most recent taxonomic reviews and global checklists (e.g. Schodde & Mason 1999, Higgins et al. 2006, Dickinson & Christidis 2014, Gill & Donsker 2016, del Hoyo & Collar 2016) show a trend to assigning them to two or three genera: Cracticus Vieillot, 1816, for the butcherbirds, monotypic Gymnorhina G. R. Gray, 1840, for the Australian Magpie as G. tibicen (Latham, 1802), and in some recent checklists (Dickinson & Christidis 2014, Gill & Donsker 2016) monotypic Melloria Mathews, 1912, for Black Butcherbird as M. quoyi (Lesson & Garnot, 1827). Australian Magpie’s close relationship to butcherbirds has long been recognised (Storr 1952, Amadon 1953, Schodde & Mason 1999, Johnstone & Storr 2004). Molecular phylogenetic analysis of the group (Kearns et al. 2013) renewed debate over the number of genera that should be recognised. Our broad aim here is to address that question.

Three key results of Kearns et al. (2013) frame our review: (1) Australian Magpie is phylogenetically nested within the clade of butcherbirds; (2) within that clade its closest relative (sister species) is Black Butcherbird [C.] quoyi, and (3) the Australian Magpie / Black Butcherbird pair itself comprises the sister group of all other butcherbirds. Together, these results render Cracticus paraphyletic if Gymnorhina is retained for Australian Magpie.

The most pragmatic taxonomic response to this phylogenetic result, and that advocated by Kearns et al. (2013), is to recognise Cracticus for the entire clade. That treatment had been adopted previously by some (Storr & Johnstone 1979, Johnstone 2001, Johnstone & Storr 2004, Christidis & Boles 2008, Russell & Rowley 2009) and has since been followed by others (Nguyen et al. 2013, Beehler & Pratt 2016). Alternatively, if Gymnorhina is retained for Australian Magpie then the paraphyly of Cracticus can be addressed either by
assigning Black Butcherbird to Melloria, or placing it with Australian Magpie in Gymnorhina. Accordingly, our specific aim here is to assess all of the available data (morphological, molecular, behavioural) to determine which of these options is best applied.

Debate over generic assignment of the Australian Magpie has hinged on how best to interpret its traits associated with terrestriality in genus-level systematics. In choosing to advocate a broad Cracticus, Kearns et al. (2013) stressed a view that had been argued earlier: that distinctive traits of Australian Magpie solely comprise an adaptive suite and that Cracticus should be used for the whole group including Australian Magpie (e.g. Storr 1952, 1977, Johnstone & Storr 2004, Christidis & Boles 2008, Russell & Rowley 2009, Kearns et al. 2013, Nguyen et al. 2013, Beehler & Pratt 2016). Alternatively, it has been argued that when coupled with the bird’s complex communal social system, these traits are indicative of a degree of evolutionary distinctiveness that warrants recognition at genus level (Schodde & Mason 1999, Horton et al. 2013).

Given agreement that Australian Magpie is indeed a terrestrially-adapted butcherbird (Kearns et al. 2013), the pertinent questions become whether all of its distinctive traits can be consistently interpreted in this way and how many genera should be recognised among Australo-Papuan butcherbirds. This paper seeks to answer these questions by freshly appraising the diversity and evolutionary history of the group. In particular, we test assertions in the literature that the distinctive traits of Australian Magpie are predominantly adaptations for terrestrialism (Storr 1952, 1977, Christidis & Boles 2008, Russell & Rowley 2009, Nguyen et al. 2013, Beehler & Pratt 2016), and that Black Butcherbird is insufficiently distinctive or divergent from other Cracticus to warrant a separate genus (Russell & Rowley 2009, Beehler & Pratt 2016). We also take the opportunity to correct errors in osteological criteria proposed by Schodde & Mason (1999) and cited by Higgins et al. (2006).

Methods

We have (i) reviewed relevant literature, (ii) examined collections held at the Western Australian Museum, Perth (WAM), Australian National Wildlife Collection, Canberra (ANWC), and South Australian Museum, Adelaide (SAMA); (iii) skulls held at ANWC and Murdoch University, Perth; (iv) reviewed data from egg collections in Online Zoological Collections of Australian Museums (OZCAM) accessed via the Atlas of Living Australia (www.ala.org), and the photographic plates of eggs in Johnstone & Storr (2004). One of us (MC) measured proportional egg shape of a representative sample (n = 287 eggs from 157 clutches) using the egg modelling plug-in for ImageJ (National Institutes of Health; https://imagej.nih.gov/ij/) developed by Troscianko (2014). This generated max. width (as proportion of length) and ‘pointedness’, a measure of deviation from an ellipse. We reviewed available images, including exploratory analysis of bill shape and proportions from head profile images. We reviewed vocalisations available on Xeno-canto (www.xenocanto.org), Macaulay Library (www.macaulaylibrary.org), published audio collections (Bird Observers Club of Australia 1983–99) and commercially available digital sources (Morecombe & Stewart Guide to Birds of Australia [iOS app], PDA Solutions; Pizzey and Knight Birds of Australia Digital Edition v.1.2 [iOS app], Gibbon Multimedia). For morphometric comparisons we assembled standard measurements (wing chord, tail, culmen, tarsus length) published for all relevant taxa (Amadon 1951, Rand & Gilliard 1967, Ford 1979, Black 1986, Johnstone & Storr 2004, Higgins et al. 2006, Kearns et al. 2011), supplemented by finer-grained datasets for Black Butcherbird (Mees 1964, Ford 1983) and Hooded Butcherbird C. cassicus (Mayr 1940, Junge 1958). Principal component analysis (PCA) was performed (SPSS Statistics, v.22, IBM) using a rotated covariance matrix on sex-adjusted z-scores.
Results

Australian Magpie—unique traits
Key diagnostic traits are indicated in italics. For simplicity, species epithets are used to refer to species (i.e., *tibicen* and *quoyi* for Australian Magpie and Black Butcherbird, respectively). In the following, Australian Magpie is named as a butcherbird (i.e., the term is used in the broad sense); the term ‘core *Cracticus*’ indicates all butcherbirds excluding Australian Magpie and Black Butcherbird.

Structure and bare parts

i. Markedly different proportions, with much longer wing and shorter tail relative to body length (Amadon 1951, 1953). Wing:tail ratio 1.8–1.9, cf. 1.2–1.4 in other butcherbirds (as similar to *Strepera*). PCA using published wing / tail / culmen / tarsus measurements demonstrated the clear structural differentiation of Australian Magpie vs. the remaining butcherbirds, the major disjunction from all other taxa being along principal component axes correlated to wing or wing + tarsus length (Fig. 1).

ii. Shape of wing more pointed, with a broad base and narrower tips forming a long triangle, particularly evident in flight (Parsons 1968, Schodde & Mason 1999, Higgins *et al.* 2006); this difference is reflected in more acutely tapered wing formula (data from Higgins *et al.* 2006) with p7 longest, compared with blunter wings in other butcherbirds, especially *quoyi* (Fig. 2). Shape of individual outer primaries also more pointed (Parsons 1968). Wing formulae for New Guinea species not available, but wing shape of *Cracticus cassicus* matches the core *Cracticus* in available flight images (e.g. Coates 1990: 376).

Figure 1. Principal component analysis (PCA) on sex-adjusted z-scores from published morphometrics of butcherbird and Australian Magpie taxa, using (a) wing / tail / culmen length, or (b) wing / tail / culmen / tarsus length. In each PCA the first two components explained >91% of the variance. In the first PCA (wing / tail / culmen), PC1 was most strongly correlated to wing and PC2 was most strongly correlated to tail and culmen length; in the second (wing / tail / culmen / tarsus), PC1 was most strongly correlated to wing and tarsus, and PC2 was most strongly correlated to tail and culmen length. Squares = males; circles = females; white = *Gymnorhina*, black = *Melloria*, grey = white-throated group, black / white = ‘hooded’ group taxa as labelled: nig, *Cracticus n. nigrogularis*, pic, *C. n. picatus*, her, *C. cassicus hercules*, lou, *C. louisiadensis*.
iii. Longer wing contains 11 secondaries, cf. ten in other butcherbirds (Parsons 1968, Higgins et al. 2006).

iv. Long-legged with long tarsus, both proportionately (e.g. relative to body length) and absolutely (tarsus >45 mm), being closest to quoyi (see below). Feet and claws rather powerful, almost raptorial in character (Kaplan 2004, Higgins et al. 2006).

v. Semi-booted laminiplantar tarsus, vs. weakly scutellate in at least other Australian butcherbirds (Schodde & Mason 1999, Higgins et al. 2006).

vi. Bill lacks prominent hook, cf. in all other butcherbirds, tip characteristically decurved to form a sharp hook with adjacent notch in upper tomidum (Higgins et al. 2006). Long wedge-shaped bill distinctive for the following combination of characters, although none diagnostic alone (Fig. 3): bill proportionately long and deep-based (as in quoyi, Cracticus cassicus and Tagula Butcherbird C. louisiadensis), with straight edge to upper and lower profile (in this closest to nigrogularis), and is the most steeply tapered bill of all of the butcherbirds (i.e. proportionately narrowest at bill midpoint relative to base, and forming greatest angle between culmen and mandible).

vii. Iris brighter, orange-brown to red-brown to red in adults, cf. dark brown in all other butcherbirds (Robinson 1956, Johnstone & Storr 2004, Higgins et al. 2006) vs. notably, yellow in Strepera and red in Peltops, and also reportedly paler brown in juvenile quoyi (Coates 1990, Pratt & Beehler 2014).

Plumage and moult

viii. Plumage sexually dimorphic, with mottled (or scaled) grey replacing male’s brilliant white upperparts in females of all subspecies and intergrades, including on the hindneck and rump of those with black dorsal bands, and more distinctly dimorphic (black-scaled female dorsum) in white-backed subspecies G. tibicen dorsalis; cf. sexes...
very similar (at most, e.g., slightly duller hood) in all other butcherbirds (Amadon 1951, Beehler et al. 1986, Higgins et al. 2006).

ix. Slow to mature to adult plumage, with second immature males resembling females, and males taking up to four years to reach adult plumage (Robinson 1956, Johnstone & Storr 2004, Higgins et al. 2006) followed by progressive whitening of rectrix shafts and narrowing of terminal tail-band for up to ten years (Robinson 1956, Black & Ford 1982); cf. one year to mature in other butcherbirds, albeit slower in Grey Butcherbird *Cracticus torquatus* which has a subtle second immature plumage (Schodde & Mason 1999). Similarly, Australian Magpie is slower to achieve adult bill colour than other butcherbirds (Robinson 1956, Higgins et al. 2006, Russell & Rowley 2009).

Eggs

x. Proportional egg shape averages longer and more pointed (this study; *P*<0.0001 and *P*<0.01, respectively) compared to all other Australian butcherbirds (Fig. 4), and presumably also *Cracticus cassinus* from published egg dimensions.
Eggs highly variable in ground colour and character and colour of markings (Fig. 5), even at same locality, as particularly noted by Campbell (1900). Base colour most commonly pale bluish or blue-green, being closest to quoyi (typically pale greyish green), cf. more typically olive, brown, buff or pink tones in other butcherbirds (Campbell 1900, Beruldsen 1980, Higgins et al. 2006, Russell & Rowley 2009), as in Strepera.

Egg markings include linear streaking, scrawls and fine lines, cf. in all other butcherbirds limited to dots, spots and blotches (Coates 1990, Higgins et al. 2006, Horton et al. 2013), as in Peltops, Artamus and most Strepera (although those of Pied Currawong S. graculina occasionally exhibit fine streaks). Egg markings less commonly concentrated at larger end, c.1/4 of clutches vs. 3/4 of clutches in other butcherbird species.

Behaviour

Highly social, with permanent group territories and complex social interactions including dominance hierarchies, across sometimes large groups, and forming seasonal
flocks of territorially excluded birds in some subspecies (Brown & Veltman 1987, Higgins et al. 2006); cf. other butcherbirds generally in simple pairs or, at most (e.g., in Cracticus nigrogularis and C. cassicus), small social groups mostly including previous offspring (Peckover & Filewood 1976, Russell & Rowley 2009).

xiv. Extreme territoriality reflected in many specialised territorial behaviours (Brown & Veltman 1987).

xv. Highly complex and varied vocalisations, many with complex social functions (Higgins et al. 2006), notably unique carolling behaviour as group display of territoriality (cf. simpler antiphonal duetting in other butcherbirds) and a greater range of short calls (see below).

xvi. Easy walking and running gait, rather than hopping on the ground as in other butcherbirds which are lighter and shorter-legged (Kaplan 2004).

xviii. Nest site usually higher in exposed crown or upper canopy of a tall tree, and occasionally nests on artificial structures; cf. typical nest sites of other butcherbirds lower in smaller trees (Beruldsen 1980, Higgins et al. 2006, Russell & Rowley 2009), although Pied Butcherbird Cracticus nigrogularis nests can be similarly exposed (Johnstone & Storr 2004).
Does not wedge or hang 'butcher' prey, as in the classic shrike-like behaviour observed in other butcherbirds; rather, oversize prey held with feet while dismembering it (Debus 1996, Higgins et al. 2006).

Black Butcherbird and Australian Magpie—shared traits

i. Generally large size (e.g. total length).

ii. Long-legged; tarsus long, robust (pace Mathews 1912) and laterally flattened (Higgins et al. 2006). Tarsus in smallest Black Butcherbird subspecies rufescens >37 mm, thus >12% longer than hooded butcherbird group, including cassicus of similar body weight. In considering tarsal form, it may be significant that quoyi forages more frequently on the ground than other more arboreal 'perch-and-pounce' butcherbirds (Diamond 1972, Peckover & Filewood 1976, Debus 1996, Beehler & Pratt 2016), and that Nguyen et al. (2013) noted the lateral shaft of the tarsometatarsus as shallowly concave in these species, but not other Australasian butcherbirds.

iv. Bluish-green gloss to black plumage, distinctly so in quoyi but slightly less so in tibicen in good light (Fig. 3), as also in Peltops; cf. in core Cracticus, at most a slight black gloss in good light on underparts of nigrogularis (Coates 1990, Johnstone & Storr 2004, Higgins et al. 2006).

v. Both lack white tail tips, a motif otherwise conserved across all other butcherbirds including C. louisiadensis and similarly melanistic Strepera species (Debus 1996); both also have all-black remiges, thus lacking conserved motif of white or white-edged inner 2–3 secondaries (+/- outer tertials) forming long wingbar in all other butcherbirds.

vi. In this study, skulls of both tibicen (n = 7) and quoyi (n = 2; one Australian and one New Guinean) found to have more defined and deeply depressed temporal fossae, resulting in relatively more prominent and thus longer post-orbital process due to caudal excavation (contra errata in Schodde & Mason 1999, repeated in Higgins et al. 2006); cf. temporal fossa weakly defined and shallower, with reduced caudal excavation of post-orbital process, in Cracticus nigrogularis (n = 2) and C. torquatus (n = 3). Zygomatic process and its medial accessory process typically broader based and ‘bluntly bifid’, although in this study these features found to be more variable within than between taxa, thus not diagnostic (contra Schodde & Mason 1999).

vii. Habitual use of short calls in vocal repertoire, including short caws, yodels and ringing notes used for social contact; vs. in other butcherbirds, short calls infrequent (cf. complex piping or rollicking song) and limited to sharp alarm notes and begging calls, plus soft croaks in Cracticus cassicus. Notably, Black Butcherbird calls in Queensland, Northern Territory and on Daru Island include a kurr-ra-rung call very similar to Strepera graculina (Rix 1970, Coates 1990, Debus 1996, Higgins et al. 2006), while certain calls of Australian Magpie, plus Black Butcherbird in New Guinea (Diamond 1972) and reportedly also the Kimberley region of Western Australia (Johnstone & Storr 2004), have a ringing quality similar to Grey Currawong Strepera versicolor (Fig. 6).

Black Butcherbird—unique traits

i. Wholly black adult plumage.

ii. Shape of wing more rounded, with a bluntly rounded tip in flight and less tapered wing formula (Higgins et al. 2006), and blunter shape to primary remiges; clearly
contrasting with pointed wing of sister *tibicen*, but also divergent from other Australian butcherbirds (Fig. 2).

iii. Larger black tip to bill, typically half of bill length or greater, cf. distal third or less in other butcherbirds (Johnstone & Storr 2004, Higgins *et al.* 2006).

Discussion

Genera: to split or not to split.—Given the phylogeny for the butcherbird group (Kearns *et al.* 2013), three options preserving monophyly of genera are available for its classification: (1) all species placed in *Cracticus* (i.e. recognising Australian Magpie as *Cracticus tibicen*), (2) recognition of *Gymnorhina* for Australian Magpie and Black Butcherbird, or (3) recognition of two monotypic genera, *Gymnorhina* for Australian Magpie and *Melloria* for Black Butcherbird.

While all of these options are nomenclaturally valid, we note that avian systematics in recent years has seen many genera dismantled essentially for one of three reasons (Provost *et al.* 2018). First are cases in which the relevant species are now confidently understood not to be each other’s closest relatives. Dismantling *Lichenostomus* and *Monarcha* in the
Australo-Papuan honeyeaters and monarch flycatchers, respectively (see Nyári & Joseph 2011, Andersen et al. 2015, Marki et al. 2017), or Myrmeciza for some Neotropical antbirds (Isler et al. 2013) are straightforward examples. Second are genera where the member species are not each other’s closest relatives but not all relevant species have been sampled. A split is needed and either is recommended or held in abeyance until taxon sampling is completed. Arguably, these two situations are the only ones where a decision to dismantle a genus can be objective. Third are cases where the relevant species are indeed each other’s closest relatives, and can validly be recognised with a single genus. Inevitably, in this case some subjectivity based on a ‘weight-of-evidence’ criterion is involved in decisions to dismantle larger genera into component smaller ones. For example, clear phylogenetic structure revealed by DNA studies and concordant variation in other character sets (e.g. plumage, anatomy, vocalisations) is judged as amounting to a sufficient weight of evidence to recognise different genera. Examples are the break-ups of Aratinga and Ara among Neotropical parrots (Kirchman et al. 2012, Remsen et al. 2013), Calyptorhynchus among Australian cockatoos (Dickinson & Remsen 2013) and Meliphaga in Australo-Papuan honeyeaters (Joseph et al. 2014). The present case is clearly excluded from the first two categories but does fall within this last, more subjective category.

Next we note the utility of smaller genera as tools for efficient communication of information on both the evolutionary history and phenotypic traits of the constituent species (Vences et al. 2013), and as a means for clarifying rather than obscuring the true relationships and basic patterns of the broader group (Mayr 1943). Vences et al. (2013) proposed criteria for optimising supraspecific classifications in this context. Their criterion of phenotypic diagnosability states that classifications should highlight the most important and conspicuous evolutionary changes (e.g. body plan, behaviour) such as those that are readily recognised even by non-specialists (i.e. lay recognition of [Australian] ‘maggie’ and ‘butcherbird’ morphotypes), while accepting that recognition of more cryptic groups can sometimes be necessary. A further, albeit subjective, criterion suggests that minimal taxonomic change is warranted for well-known and frequently encountered taxa (Vences et al. 2013) which might be invoked here. However, Vences et al. (2013) specifically dismissed as theoretically and practically problematic the application of a hybrid viability criterion, which might be argued for the butcherbirds given several records of Australian Magpie × Pied Butcherbird hybridisation (Debus 1996, Donato & Potts 2004).

Vences et al. (2013) further proposed a secondary adaptive zone criterion particularly applicable to the rank of genus, encouraging classifications defined by exploitation of a particular ecological niche. This contrasts directly with the opposing argument advocated for synonymising Gymnorhina in Cracticus, i.e., that the numerous divergent traits of Australian Magpie are unworthy of generic recognition because they represent a single correlated suite of adaptations for terrestrial foraging (Storr 1952, Christidis & Boles 2008, Russell & Rowley 2009, Nguyen et al. 2013, Beehler & Pratt 2016). This taxonomic dismissal of niche-driven ‘ecological adaptation’ also contrasts with, to use the same examples cited by Kearns et al. (2013), the conventional multi-generic treatment of adaptive radiations such as the Malagasy vangas (Reddy et al. 2012) or indeed Darwin’s Galápagos finches (Sato et al. 1999).

Regardless, we conclude here that only a subset of the many distinctive traits of Australian Magpie are justifiably and unequivocally correlated to terrestrialism (viz. robust legs and walking gait, short tail accommodating a more upright stance, dorsal not ventral patterning, lack of hooked bill). If extended to include adaptation to expanding open savannas during Miocene-Pliocene aridification (Kearns et al. 2013), this suite might arguably also include its distinctly long and pointed wings. Counter to this is the lack of
similar structural differentiation between savanna-dwelling *Cracticus nigrogularis* and its tropical forest-associated sister group of *C. cassicus* and *C. louisiadensis*. Conversely, we note divergence in traits with no known adaptive significance for either terrestrial foraging or open savanna habitat, but which warrant research in this regard (e.g. plumage, iris colour, egg shape and colour, moult and maturation, social behaviour, vocalisation). This suggests a pattern of general divergence (or alternatively, if implausibly, ancestral traits lost in other butcherbirds), alongside more focused niche adaptation.

The implication that all ‘butcherbirds’ should constitute a single genus and that the phenotypic divergence of Black Butcherbird is insufficient for recognition at genus level (Russell & Rowley 2009, Beehler & Pratt 2016) is countered with contemporary examples of genus-level radiation with weak morphological divergence but clear phylogenetic structure (see above). Examples in Australia are within the Australo-Papuan robins (e.g. *Eopsaltria / Quoyornis*; *Microeca* and related genera; Loynes et al. 2009) and honeyeaters (e.g. *Meliphaga*, *Microptilotis*; Joseph et al. 2014). Mathews (1912: 114) originally diagnosed *Melloria* for the Black Butcherbird by its ‘stouter longer bill and longer wing and tail and stouter feet’. All but the last trait neglect some overlap in measurements between the smallest subspecies *rufescens* and *Cracticus cassicus*, especially its large island form *C. c. hercules*. Here, we instead note a number of traits shared by Black Butcherbird and Australian Magpie but not by other butcherbirds, including their long robust tarsus, glossy plumage, distinctly deeper temporal fossa (correcting error in Schodde & Mason 1999), and habitual use of short ringing or yodelling calls. The similarity of some Black Butcherbird calls to those of *Strepera* has been noted by others (Rix 1970, Debus 1996, Johnstone & Storr 2004, Higgins et al. 2006), and we note here the same similarity for some calls of Australian Magpie. These shared traits can variously be interpreted as either derived from the most recent common ancestor of Australian Magpie and Black Butcherbird, thereby affirming their monophyly, or as inherited from a more distant ancestor but correspondingly lost or modified in other butcherbirds, so affirming their divergence. Additionally we note the proportionately long inner primaries of Black Butcherbird yielding a uniquely rounded wing compared to other butcherbirds (although wing formula data are absent for New Guinean species), possibly an adaptation for its preferred closed-forest habitat, vs. the long pointed wings and open savanna habitat of Australian Magpie. These shared and unique traits collectively establish a wider morphologic and phenotypic ‘gap’ between Black Butcherbird and other *Cracticus* (sensu Mayr’s 1943: 139 ‘decided gap’ or Vences et al.’s 2013: 224 ‘phenotypic diagnosability’) than has previously been appreciated. While acknowledging some inevitable subjectivity in these arguments, we suggest that the evolutionary diversity this ‘gap’ represents warrants emphasis at the generic level. That is, recognition of *Gymnorhina* and *Melloria* serves the biologically useful purpose of communicating this diversity. Concomitantly, we posit that their shared traits do not form sufficient argument for a shared *Gymnorhina* containing both *tibicen* and *quoyi*, as that would ignore the many unique traits of Australian Magpie, whether adaptive or simply divergent, or both, as well as diagnosability criteria we have discussed.

Conclusion

Our re-appraisal of the Australo-Papuan butcherbirds and Australian Magpie shows that the deep genetic structure confirmed by Kearns et al. (2013), i.e. Black Butcherbird representing a separate lineage to other butcherbirds and sister to Australian Magpie, is broadly concordant with patterns and ‘gaps’ in phenotypic diversity within the group. This is especially so when fully compared across structure (including wing shape, osteology), plumage, behaviour (including nidification and vocalisations), and ecological niche. We conclude that this clade of closely related species has an evolutionary history and diversity
most usefully recognised in three genera: robust, terrestrial Gymnorhina; robust, forest-dwelling Melloria; and the smaller more gracile, more structurally and ecotypically similar core Cracticus. These groups broadly represent divergent radiations for open terrestrial foraging, closed-forest subcanopy, and more open woodland and forest edge, respectively. However we also note examples of divergence (perhaps ancestral diversity) lacking a clear ecological basis. We specifically refute a repeated misconception in the literature that has caused the many distinctive traits of Gymnorhina to be dismissed as a single suite of ‘foraging adaptations’ (Storr 1952, Christidis & Boles 2008, Russell & Rowley 2009, Beehler & Pratt 2016). In addition, we particularly note the shared blue-green gloss, long robust tarsus, temporal form, and short currawong-like calls of the Melloria + Gymnorhina clade, and the broad rounded wing of Melloria. We view these as significant to systematics when combined with distinctions previously acknowledged for all-black Melloria and terrestrially adapted Gymnorhina, and all within the phylogenetic structure outlined by Kearns et al. (2013). While nomenclaturally valid, synonymising Gymnorhina with Cracticus including quoyi (sensu Johnstone & Storr 2004, Christidis & Boles 2008, Russell & Rowley 2009, Beehler & Pratt 2016) needlessly discards much significant information regarding the evolutionary history and adaptive diversity of the group, as summarised above. We thus commend recognition of both Gymnorhina and Melloria (sensu Dickinson & Christidis 2014, Gill & Donsker 2016, del Hoyo & Collar 2016) as the taxonomic treatment best reflecting current understanding of evolutionary relationships and phenotypic diversity in the Cracticini.

Acknowledgements

We thank Richard Schodde for helpful comments and confirming details of skull morphology, Wayne Longmore and Ron Johnstone for their thought-provoking reviews, and the following photographers for partial use of their images in composite figures: Fig. 2, Cracticus nigrogularis 2014 Chris Miller, Melloria quoyi 2016 tinyfishy World Birds In-flight, G. tibicen 2010 Creative-Addict, Strepera graculina 2008 Tobias Hayashi; Fig. 3, (head of) Gymnorhina tibicen 2005 Aviceda, M. quoyi 2016 Hal & Kirsten Snyder, Cracticus cassicus 2004 mehpalouate, C. nigrogularis 2008 Quartl, C. mentalis 2013 Rhonda Hansch, C. argenteus Laurie Ross, C. torquatus 2012 margosnotebook.

References:

Campbell, A. J. 1900. Nests and eggs of Australian birds, including the geographical distribution of the species and popular observations thereon. Pawson & Brailsford, Sheffield.

© 2018 The Authors; This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Vences, M., Guayasamin, J. M., Miralles, A. & de la Riva, I. 2013. To name or not to name: criteria to promote economy of change in Linnaean classification schemes. *Zootaxa* 3636: 201–244.

Addresses: Martin Cake, School of Veterinary & Life Sciences, Murdoch University, Western Australia 6150, Australia, e-mail: mcake@murdoch.edu.au. Andrew Black, Dept. of Ornithology, South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia, e-mail: abblack@bigpond.com. Leo Joseph, Australian National Wildlife Collection, National Research Collections Australia, CSIRO, Australian Capital Territory 2601, Australia, e-mail: Leo.Joseph@csiro.au
A black page in the French partridge’s history: the melanistic variety of Red-legged Partridge *Alectoris rufa*

by Hein van Grouw, Ludovic Besson & Benoît Mellier

Received 24 August 2018; revised 5 October 2018; published 14 December 2018

Summary.—The melanistic variety of Red-legged Partridge *Alectoris rufa* was described from a small population in western France around the 1850s. In this region, the Red-legged Partridge population as a whole was hunted, but melanistic individuals were targeted for both private and museum bird collections, and by 1865 the variety was extinct in western France. An extensive search for extant specimens documented 13 melanistic birds in six museums, and their details are presented here. Remarkably, some of these specimens were collected in areas elsewhere in France or even in other countries. After 1915, the allele for melanism appears to have been lost within the Red-legged Partridge population as a whole, and we discuss possible reasons for this.

‘…, nous sommes persuadé que cette perdrix qui tend à demeurer en Anjou [now Maine-et-Loire] se multipliera dans quelques années, au grand contentement des amateurs de la chasse et de l’ornithologie.’ […] we are persuaded that this partridge which tends to remain in Anjou will multiply in a few years, to the great satisfaction of the amateurs of hunting and ornithology.] (de Soland 1861: 146).

Colour aberrations, especially melanistic varieties, have always confused ornithologists. In the past, when little was known concerning plumage pigmentation and mutations, aberrant-coloured birds were often viewed as new taxa, and were named scientifically. Perhaps the oldest and best-known example is the melanistic form of Grey Partridge *Perdix perdix*, which was named as a species, the Mountain Partridge *P. montana*, by Brisson (1760; Fig. 1).

Melanism is the only mutation in which there is no real loss of pigments or changes in the shape or size of the melanin granules (van Grouw 2017). Therefore the plumage of a melanistic bird often is not obviously aberrant, i.e. the plumage looks ‘natural’ but may be completely different to any known species. That melanistic birds were, especially in the past, mistaken for ‘new species’ is therefore understandable. Sometimes ‘new species’ were erected on the basis of a single specimen simply because it was differently coloured, like Sharpe’s Rail (Hume & van Grouw 2014). Mostly, however, the confusion was based on melanistic forms that occurred, or still occur, quite commonly in the relevant species / populations. The fact that more individuals were found was, for many ornithologists, evidence that these aberrant birds were indeed species. An example is the melanistic form of Red-legged Partridge *Alectoris rufa*. This aberration was, for a period, quite common in a small area in western France, and it was consequently described as *Perdix Atro-rufa* (de Soland 1861; Fig. 2). The mutation also occurred sporadically elsewhere in Europe, as will be demonstrated later in this paper. A remarkable bird, occurring in small numbers, was inevitably the target of collectors, so specimens were deliberately obtained for museums and collectors of curiosities. Currently, the mutation is apparently not present in any extant Red-legged Partridge population, and just 13 melanistic specimens remain in museums.
Figure 1. Mountain Partridge *Perdix montana*. Brisson knew this ‘species’ only from the mountains of Lotharingen, France, hence *montana*. However, subsequently ‘*montana*’ was proven to occur all over Europe and to be a melanistic form of Grey Partridge *P. perdix*. From Sir William Jardine’s *Naturalist’s library*, 1834, *The natural history of game birds* (Hein van Grouw, © Natural History Museum, London)

Figure 2. *Perdix atro-rufa*, the melanistic variety of Red-legged Partridge, described taxonomically by de Soland (David Riou, © Musées d’Angers)
Here, we discuss the nature of melanism in Red-legged Partridge and its history, and present information for all of the remaining specimens.

History of Perdix atro-rufa in France

The first records of melanistic Red-legged Partridges are from France in the mid-19th century. A small population was discovered south-west of Cholet, at the hamlet of Cou-Pinson, part of Saint-Aubin-des-Ormeaux, in the department of Vendée, Pays-de-la-Loire, western France. A specimen was sent to the Linnaean Society of Maine-et-Loire in May 1858 by Esprit Guillou (1798–1870), a naturalist from Cholet and member of the society. During the society’s committee meeting on 18 May 1858, it was decided that the specimen represented a new ‘race’. They named it *Perdix Atro-rufa* and a description with colour plate (Fig. 2) was published by de Soland (the society’s president) in 1861. In the following years, various authors published information concerning the occurrence of *atro-rufa*, enabling us to compile a short history of the population.

The first melanistic bird was discovered by Guillou as early as 1846 (Millet de la Turtaudière 1868) in the area around Saint-Aubin-des-Ormeaux, Vendée department (de Soland 1861, Vincelot 1867). As this is only a few km from Cholet, Maine-et-Loire department, many authors considered the provenance of *atro-rufa* to be ‘the vicinity of Cholet’, but in fact the mutation was never observed in Maine-et-Loire (Millet de la Turtaudière 1865, 1868). After the first observation, at least 5–6 family groups including dark-coloured individuals were recorded in the area annually (de Soland 1861, Vincelot 1865), and the aberration would probably have become established in the population if it had not been targeted by collectors. Specimens were collected for private collections, as well as being sold as game at the markets in Cholet, or sent to Paris for research (Vincelot 1867).

De Soland (1861) already warned as to the negative effects of over-exploitation, and Millet de la Turtaudière (1865) reported that *atro-rufa* was killed by poachers and repeated that excessive hunting would threaten the population. By then, it was already too late as, according to Baugas (Lemetteil 1869), the last six individuals were killed in spring 1865. In less than 20 years after its discovery, the small population of melanistic Red-legged Partridges was wiped out. At that time, specimens were present in the private collections of Baugas (several), Guillou (four) and Lemetteil (one), and in the natural history museums of Angers (two), Saumur (at least one) and Paris (two) (de Soland 1861, Millet de la Turtaudière 1865, 1868, Vincelot 1865, Lemetteil 1869). Much of the above information was summarised by Mayaud (1947). He also mentioned specimens in different museums like Cholet and some English specimens. However, he did not mention the specimens held in Angers, Saumur and Paris. Remarkably, no-one appeared to be aware of a specimen collected in 1844 in the south of France, present in Marseille museum, which was depicted by Hachisuka (1928).

Perdix atro-rufa in England

In early 1900 the mutation appeared again, but this time in England, and three specimens are present in the Natural History Museum, Tring (NHMUK) collection (Fig. 8). Ogilvie-Grant (1912) mentioned and depicted (Fig. 3) the variety; ‘The most extraordinary variety, however, that we have ever examined, is that shown in the second figure. It has the fore-part of the head, eyebrow-stripes, cheeks and throat black; the rest of the head, mantle, breast, and flanks dull vinous-red, with the exception of a few white feathers on the middle of the breast; and the abdomen, thighs, and under tail-coverts are dull greyish-brown, with the exception of a few buff feathers on the middle of the belly. The tail-feathers are dull greyish-
brown, like the lower back, rump and wings.' He did not mention the earlier French history of this aberration, but he may have been unaware of it. Furthermore, he did not mention where the specimen came from, but it was in all likelihood that shot in Essex in 1908 (see Extant specimens). In March 1915, two \textit{atro-rufa} specimens were present in what is now the NHMUK collection, and Ogilvie-Grant (1915) exhibited a series of aberrant partridges at the Zoological Society meeting. He noted: ‘The remarkable variation which I now exhibit has the head, eyebrow-stripes, cheeks, and throat black, and the rest of the plumage dull vinaceous-red with a patch of white feathers in the middle of the belly, forming an irregular horse-shoe mark. … and it seems a remarkable coincidence that a second specimen of this quite unique variation of the red-leg should have been killed exactly six years after the first, and in nearly the same locality.’ Coincidence or not, in September 1915, the museum received a third specimen taken near the same locality as the second bird the year before.

The English melanistic specimens were also described by Bateson & Bateson (1925) as the ‘dull variety’, which they named \textit{Alectoris rufa rufa Var. obliterata}. Both Lowe (1945) and Ash (1966) mentioned the melanistic variety briefly without adding further details, although Ash also referred to the French population.

Red-legged Partridges in England originated from France, with the first introduction orchestrated by King Charles II in 1673 (Potts 2012). These birds came from Chambord, department Loir-et-Cher, in the Loire Valley, and were released in Windsor Great Park, on the Berkshire / Surrey border. This population apparently died out quickly. After several more attempts, the species eventually became well established on the Suffolk coast by c.1790. However, over the rest of England Red-legged Partridges remained uncommon until the late 1950s (Barbanera \textit{et al.} 2015). It seems probable that the English melanistic birds derived directly from the French population. However, the French population described by de Soland came from Saint-Aubin-des-Ormeaux, Vendée department, which is c.250 km west of Chambord, Loir-et-Cher department, and it is unlikely that the rare allele for
melanism was present in that population too. Furthermore, contra Potts (2012), molecular work demonstrates that English Red-legged Partridges are genetically closer to Italian and Corsican populations than to those of mainland France, with the three melanistic birds not diverging in this respect from other historical English specimens, and no relationship to birds from the Loire Valley is evident (Barbanera et al. 2015). Consequently, we consider the melanistic English birds as a fresh occurrence of the same mutation, rather than originating from the original French population.

Museum specimens of *Perdix atro-rufa*

Probably the oldest museum specimen, collected in 1844, is in Marseille but, apart from Hachisuka (1928), no other author seems to have been aware of it. Based on the pre-1870 literature (de Soland 1861, Millet de la Turtaudière 1865, 1868, Vincelot 1865, Lemetteil 1869) the following specimens were then known: four in Guillou’s private collection, ‘a few’ in Baugas’ collection, one in Lemetteil’s collection, two in Angers, at least one in Saumur and two in Paris. Mayaud (1947) seemingly listed seven additional specimens; three in London (see above) and four in Cholet. The specimens in Cholet, however, are the same as the Guillou specimens mentioned by earlier authors. Following Guillou’s death in 1870 his collection was donated to the Cholet museum (see Extant specimens).

The whereabouts of Baugas’ collection are unknown and the specimens are considered lost. Edouard Leon Baugas (1824–1901) was also from Cholet and a friend of Guillou. The specimen from Lemetteil also appears to be lost. Eugène Lemetteil (1822–90), a keen amateur ornithologist from Bolbec, was particularly interested in the avifauna of the department of Seine-Maritime (formerly Seine Inférieure), in Normandy, northern France. The melanistic partridge was sent to him by Abbot Vincelot (Lemetteil 1869). Michel Honoré Vincelot (1815–77) was an abbot at Angers (Crépon 1877), an amateur ornithologist and a member of the Linnaean Society of Maine-et-Loire with a keen interest in the etymology of bird names. Probably initiated by Lemetteil’s son-in-law Georges Pinchon, Lemetteil’s collection, which comprised approximately 2,000 specimens, both birds and eggs, was sold 14 years after his death by the auctioneer Hommais in Bolbec, and bought by Lemaistre. Although it was Hommais’ intention to sell the collection as a whole (letter PEN6 1904-018 in Rouen Museum archive), apparently Lemaistre purchased only part of it (P. Cantrel *in litt.* 2016). At the time, Edmond Lemaistre (1876–1953), a rich textile manufacturer and keen hunter, had just started to assemble a private collection of local birds. Lemaître’s collection as a whole is still at the Municipal Museum in Lillebonne, Seine-Maritime, having been bequeathed to the town in 1953. The melanistic partridge of Lemetteil, however, was never part of the bequest (P. Cantrel *in litt.* 2016), so Lemaistre may have parted with it earlier, as *atro-rufa* was not a local bird, or he never received it in the first place. If the specimen still exists, its whereabouts are unknown to us.

The Château-Musée de Saumur was founded in 1829 and based in the town hall until 1919; apparently an *atro-rufa* specimen was sent to this museum in the mid 1800s (Millet de la Turtaudière 1868). However, currently no melanistic specimen of Red-legged Partridge is present there (MB pers. obs.) and also we have not found any evidence that one was once in the collection (Courtiller 1868).

Extant specimens

Muséum d’Histoire naturelle de Marseille (MHNM), France

One mounted specimen, MHNM.0.394, originally labelled ‘Basses Alpes, France 1844’ (Fig. 4). No further details known. According to Hachisuka (1928) the specimen is a
female, but no evidence of the bird’s sex is recorded with the specimen. Until April 1970, ‘Basses-Alpes’ was the name of the Alpes-de-Haute-Provence, in southern France. If the date and locality are correct, then this specimen was collected before the population in Vendée was discovered, and is probably unrelated genetically.

Muséum national d’Histoire naturelle de Paris (MNHN), France

Two mounted specimens, Cat. Gén. 1858-1318 (other nos. 12436 and 562), originally labelled ‘France. Collection du prince Charles Bonaparte, achetée par l’état en 1858’, and Cat. Gén. 1859-610 (other nos. 12435 and 561), originally labelled ‘femelle, Bretagne. Trouvé sur le marché de Paris en décembre 1859, venant de Bretagne, acquis à Mme Perrot le 15 décembre 1859’ (Fig. 5). 12435 and 12436 are former registration numbers used in the ‘Catalogue des Oiseaux n°4 placée dans la galerie du muséum d’histoire naturelle’. 561 and 562 refer to these specimens’ entries in the ‘Catalogue des Montages’. Bretagne (Brittany) traditionally included part of Pays-de-la-Loire, so this specimen probably emanates from the original population.

Muséum des sciences naturelles d’Angers (MHNAn), France

Two mounted specimens, both males, MHNAn.2003.522 and 2003.523 (Fig. 6). In the museum’s register (2R24) both are mentioned under the same entry: 16 November 1863, two
‘Perdrix lugubres, achetée 10 francs’ It is unclear whether 1863 is the date of acquisition, collection or registration. 1863, however, appears to be incorrect for collection or acquisition as, based on de Soland (1861), these specimens must have been present in the museum.
before 1861. According to Mayaud (1947) Deloche, the former taxidermist at Angers, obtained two specimens two years after Guillou presented one to the Linnaean Society of Maine-et-Loire in 1858, so these Angers specimens probably came to the museum in 1860, rather than 1863.

Museum de Société des Sciences Lettres et Arts de Cholet et sa région (SLA), France
Four mounted specimens, SLA 274-37.2, 288-37.6, 265-37.8 and 266-37.7 (Fig. 7). These were part of the private collection of Esprit Guillou (Mayaud 1947). His son, Arthur Guillou, donated the collection to the town of Cholet in 1905, when they were placed in the SLA (F. Lambert pers. comm.). E. Guillou was a keen naturalist, bird collector and member of the Linnaean Society of Maine-et-Loire. None of his specimens are accompanied by original data or labels, but we assume that all were collected at ‘métairie du Cou-Pinson’ of the village of Saint-Aubin-des-Ormeaux in Vendée between 1846 and 1861. One of these is probably that shown to the Linnaean Society and therefore the type of the name atro-rufa, although none agrees fully in shape and posture with the depiction in the type description (see Fig. 2).
Three skin specimens, NHMUK 1908.10.22.1, male, Spaynes Hall, Braintree, Essex, shot 20 October 1908 and presented by A. W. Ruggles Brise; NHMUK 1915.1.15.1, male, Higham,

Natural History Museum, Tring (NHMUK), UK

Three skin specimens, NHMUK 1908.10.22.1, male, Spaynes Hall, Braintree, Essex, shot 20 October 1908 and presented by A. W. Ruggles Brise; NHMUK 1915.1.15.1, male, Higham,
Figure 10. Melanistic form of Red-legged Partridge *Alectoris rufa* (left) compared with a normal-coloured specimen (NHMUK 1908.10.22.1 and 1912.12.18.4). A: the upperparts are hardly affected except the neck where phaeomelanin is increased, but the underparts are uniform reddish grey-brown due to an increase of both eumelanin and phaeomelanin, while the few white feathers are a form of leucism, which often occurs concurrently with certain forms of melanism; see Figs. 12 and 15. B: flank feathers of the same specimens (Harry Taylor, © Natural History Museum, London)
near Gravesend, Kent, shot 20 October 1914 and presented by Dr Hammond Smith; NHMUK 1915.10.5.1, male, Mockbeggar, Rochester, Kent, shot 1 September 1915 and presented by Herbert Cobb (Fig. 8).

Museo Nacional de Ciencias Naturales (MNCN), Madrid, Spain

One skin specimen (relaxed mount), MNCN-A4955. Adult, originally labelled (in Spanish): ‘South West Europe, probably Spain’ (Fig. 9). The specimen was probably collected in Spain, but it is possible that it came from southern France, potentially from the same area (Alpes-de-Haute-Provence) as the Marseille specimen. The collection date is unknown, but it must be before 1912 when the museum’s collection was inventoried (J. Barreiro pers. comm.)

Discussion

The pigments responsible for the Red-legged Partridge’s plumage colour are melamins. Melanin comprises two forms: eumelanin and phaeomelanin. Depending on its concentration and distribution within the feather, eumelanin is responsible for black, grey and/or dark brown feathers, whereas phaeomelanin produces warm reddish-brown to pale buff feathers. Together, both melamins can produce a wide range of greyish-brown colours. Melanin is produced by cells called melanocytes, which are found mainly in the skin and the feather follicles (from which the feathers grow). Melanocytes within the feather follicles produce melanin, which is added to the feather cells as the feather grows. However, melanin distribution does not always occur at a constant rate. In most species, feathers have certain patterns and/or colour differences caused by the type, amount and distribution of melanin. During feather growth, sudden changes from the production of eumelanin to phaeomelanin may occur, giving rise to these different patterns (van Grouw 2017).

Many mutations in birds are known to cause plumage that is darker than normal (= melanism). Melanism, from the Greek *melanos* (= dark-coloured), is often defined as an increased amount of dark pigmentation (melanin). Aberrant dark plumage is, however, not necessarily the result of an increased amount of pigment. A change in the arrangement or distribution of pigment granules, rather than more granules being present, also causes darker plumage. Therefore a better definition of melanism is: ‘a condition characterised by abnormal deposits of melanin in skin and feathers’ (van Grouw 2017).

Although the melanistic form of Red-legged Partridge looks strikingly different from that with normal-coloured plumage, closer observation reveals that the original reddish grey-brown colour of the upperparts and wings in ‘atro-rufa’ is hardly darker (Fig. 10A). Only on the neck is more phaeomelanin present, affording the plumage a more reddish appearance. Despite its name *atro-rufa* (Latin *ater* = black and *rufus* = red), the melanistic variety displays relatively little black in the plumage, perhaps even less than in normally coloured birds. The black head and throat markings typical of normal plumage are reflected in the solid black forehead and throat of the melanistic form, but the black stripes on the flanks have disappeared, instead the flanks and underparts are uniform reddish grey-brown (Fig. 10B). The normally reddish-brown tail feathers (produced by phaeomelanin alone) now contain both melamins, and are the same colour as the underparts.

In *atro-rufa* mainly phaeomelanin seems to be increased, although not to the same extreme as in *Perdix montana* (Fig. 11) and the phaeomelanistic variety of Northern Bobwhite *Colinus virginianus* known as ‘Red Tennessee’ (Fig. 12; Cole et al. 1949). Although in appearance these melanistic varieties are very similar to *atro-rufa*, large parts of their plumage contain only phaeomelanin, while in the melanistic Red-legged Partridge both pigments seem to be equally present in most feathers. In this respect, the mutation in Red-legged Partridge is highly comparable with ‘recessive black’ in Japanese Quail *Coturnix*...
Figure 11. Melanistic form of Grey Partridge *Perdix perdix*, originally named *P. montana*, a specimen in the Naturalis Biodiversity Centre, Leiden (Hein van Grouw)

Figure 12. Melanistic form of Northern Bobwhite *Colinus virginianus* known as ‘Tennessee Red’; note the few white feathers (leucism) which often co-occur with certain forms of melanism; see Figs. 10 and 15 (© Joel Sartore)
japonica, as in the latter, due to the mutation, each feather also contains both pigments and the original patterns and markings are faded (Fig. 13). In appearance, the varieties of both species do not look like each other at all, but in their normal colour the two are also totally different. In comparing mutations within different species, one must examine what happens to the pigmentation process, rather than just comparing the final result, as this can differ between species.

The inheritance of recessive black in Japanese Quail is, unsurprisingly, recessive, and the mutation is associated with the agouti gene (Hiragaki et al. 2008). Two important genes that regulate the production and deposition of the two types of melanin are agouti (A) and extension (E). The agouti gene regulates the distribution of eumelanin and phaeomelanin on each feather and over the surface of the body, while the extension gene is responsible for controlling the type of melanin being produced: eumelanin or phaeomelanin. Mutations of either of these genes can cause an abnormal deposition of melamins in the plumage (van Grouw 2017). Based on the similarity to recessive black in Japanese Quail, we assume the melanistic form of Red-legged Partridge was also recessive in inheritance.

Recessive black is also recorded in Common Quail Coturnix coturnix and this variety was described as a species, Synoicus lodoisiae, by Verreaux & des Murs (1862; Fig. 14). A similar mutation, which is rather common in northern Russia west of the Urals, chiefly in Perm and Olonetz Oblasts, also occurs in Hazel Grouse Tetrastes bonasia. Due to its frequency, Menzbier (1880) considered it a valid species and named it T. gryseiventris (Figs. 15–16).

The presumably recessive gene mutation responsible for the melanistic variety of Red-legged Partridge altered the deposition of both melamins in the feathers. In some species, like Northern Bobwhite, the melanistic variety (which mainly shows increased phaeomelanin) is weaker and less fertile than typical individuals (Cole et al. 1949). In Feral Pigeons Columba livia negative effects on fitness are also linked to strongly phaeomelanised plumage (van Grouw 2017). Furthermore, the reddish ‘morph’ of Grey Partridge, ‘montana’, persistently
Figure 14. *Synoicus lodoisiæ*, in Verreaux & des Murs (1862), which proved to be a melanistic variety of Common Quail *Coturnix coturnix* (Hein van Grouw, © Natural History Museum, Tring)

Figure 15. Menzbier’s Hazel Grouse *Bonasa griseiventris* [sic], in Dresser (1896), proved to be a melanistic variety of Hazel Grouse *Tetrastes bonasia*; the specimen Dresser selected for the illustration had a small white bib and a few white feathers behind the eye, features which he assumed distinguished the ‘species’. However, a few white feathers often co-occur with certain forms of melanism, but are certainly not usual (Hein van Grouw, © Natural History Museum, London)
re-appears due to the recessive nature of the mutation, but there is no evidence that this phaeomelanised variety increases numerically anywhere in the species’ natural range. So mutations causing an increase of phaeomelanin apparently negatively affect fitness, whereas ‘eumelanism’ often has no effects or even contributes positively (van Grouw 2017).

The small population of melanistic Red-legged Partridges in the Pays-de-la-Loire region of north-west France became extinct less than 20 years after its discovery in 1846. In addition to being hunted for their meat, melanistic birds were consistently targeted by collectors.
which certainly contributed to their extirpation. Whether the mutation also had negative effects on fitness meaning that a thriving population would never have become established is unknown. Many mutations, however, like ‘Leucism’, ‘Dilution’ and ‘Brown’ (Figs. 17–19), in Red-legged Partridge are widespread in populations and appear repeatedly in the wild. In contrast, the melanistic variety is known only from three localities and for a period of c.70 years prior to 1915. A possible explanation for the loss of the melanistic variety is that the allele for this mutation has disappeared altogether from Red-legged Partridge populations due to hunting and an influx of genetically unrelated birds.

The estimated combined population of Red-legged and Grey Partridges in 1858 in France was c.20 million individuals. Subsequently, due to hunting and climatic changes, numbers of Red-legged Partridge declined dramatically and, in 1979, they were estimated at just 300,000–550,000 breeding pairs. Consequently, since the 1970s the species has been bred for hunting on a large scale in France (ONCFS 2018). In 1995, for example, no fewer than 2.5 million birds were released for sport hunting (Tupigny 1996). Due to the large influx of captive-bred birds into the wild, the genetic composition of the wild population has been
diluted to the extent that the original population may become extinct sooner rather than later (ONCFS 2018).

In Britain the situation is little better. Although the species was by then well established in the wild in many parts of the UK, releasing captive-bred birds for sport commenced in 1963. For a time, the closely related Chukar *A. chukar* and Chukar × Red-legged Partridge hybrids were released too, but this practise was prohibited in 1992 to protect the genetic integrity of the wild population. Currently releases of captive-bred Red-legged Partridges are estimated at 6.6 million birds p.a. in the UK (Game & Wildlife Conservation Trust 2018).

Whether it was unfitness, consistently being targeted by hunters, reduced genetic diversity, or a combination of these factors, the melanistic form has disappeared from Red-legged Partridge populations. All that remains are 13 museum specimens—the dark reminders of an even darker history.

Acknowledgements

We thank Till Töpfer for reviewing the manuscript, and for his helpful comments and suggestions which improved the paper. We also thank Harry Taylor of NHMUK for taking digital images of the Tring specimens, and Fernand Lambert and Gustave Bourreau (SLA, Cholet), Jean-Nicolas Magnan and Stéphane Jouve (MHNM, Marseille), David Riou (MHNAn, Angers), Jérôme Fuchs and Dario Zuccon (MNHN, Paris) and Josefina Barreiro (MNCN, Madrid) for providing digital images and / or information regarding specimens in their care. Nico van Wijk and Joel Sartore also provided photographs, and Patricia Cantrel (Municipal Museum, Lillebonne) and Isabelle Wilmet (MHN, Rouen) checked details for us in their museum’s archives.

References:

Dresser, H. E. 1896. *Supplement to a History of the birds of Europe, including all the species inhabiting the Western Palearctic region*, vol. 9. London.

Addresses: Hein van Grouw, Bird Group, Dept. of Life Sciences, Natural History Museum, Akeman Street, Tring, Herts. HP23 6AP, UK, e-mail: h.van-grouw@nhm.ac.uk. Ludovic Besson, Muséum d’Histoire naturelle de la ville de Bourges, Les Rives d’Auron - Allée Ménard 18000 Bourges, France, e-mail: Ludovic.BESSON@ville-bourges.fr. Benoît Mellier, Muséum des sciences naturelles d’Angers, 43 rue Jules Guitton, 49100 Angers, France, e-mail: Benoit.Mellier@ville.angers.fr
First description of the nest, eggs and nestlings of Scallop-breasted Antpitta *Grallaricula loricata*

by Jhonathan E. Miranda T., Karen López & Harold F. Greeney

Received 20 June 2018; revised 5 September 2018; published 14 December 2018

http://zoobank.org/urn:lsid:zoobank.org:pub:80C55F73-E89F-4ABA-8EDA-B63F6729600F

The genus *Grallaricula* (Grallariidae) comprises 8–9 species of small, semi-terrestrial antpittas (Krabbe & Schulenberg 2003, del Hoyo *et al.* 2017, Remsen *et al.* 2017). Following the first nest description for Rusty-breasted Antpitta *G. ferrugineipunctatus* (Schwartz 1957), the first for the genus, our knowledge of the breeding biology of other *Grallaricula* remained a mystery until the start of the 21st century, when the first nests were described for Ochre-breasted Antpitta *G. flavirostris* (Holley *et al.* 2001, Maillard-Z. & Vogel 2003). Less than a decade later, nest descriptions and reproductive data were available for half of the species (Greeney *et al.* 2008), with the most recent addition being a nest description for Crescent-faced Antpitta *G. lineifrons* (Greeney & Jipa 2012). To date, nest descriptions are available for five species and egg descriptions have been published for six species (see Discussion), with Ochre-fronted Antpitta *G. ochraceifrons* and Scallop-breasted Antpitta *G. loricata* being the only two species lacking descriptions of both nests and eggs.

Scallop-breasted Antpitta is endemic to the north coastal mountains of Venezuela, where it inhabits the understorey of humid montane forests, generally above 1,400 m (Verea & Greeney 2014, Greeney 2018). As a range-restricted species facing severe habitat loss, it is currently considered Near Threatened (BirdLife International 2017). Despite several studies in the past two decades that have improved our knowledge of its distribution, plumage, moult, and basic habits (Verea *et al.* 1999, 2009, Verea 2004, 2007, Verea & Solórzano 2011), the reproductive biology of Scallop-breasted Antpitta remains completely unknown (Verea & Greeney 2014). Here we provide the first descriptions of the nest, eggs and nestlings, based on two active nests and five inactive nests found in Venezuela’s Sierra de Aroa National Park.

Methods and Results

All of the following observations were made in the El Silencio section of Sierra de Aroa National Park, near Pico El Tigre, Yaracuy, Venezuela. We found the first active nest (hereafter nest 1), containing two nestlings, on 26 May 2013, at an elevation of 1,696 m along the road to Pico El Tigre (10°22′36″N, 68°48′39″W). Both nestlings were still in the nest the following day but we found the nest empty, but intact, upon our return on 31 May. The second active nest (hereafter nest 2) was c.0.25 km south-east of nest 1 at an elevation of 1,767 m, and contained a single egg on 1 June 2013 at 13.30 h. Upon our return at 06.30 h on 2 June, the nest held a second egg. We visited this nest until 3 June and subsequently on 21 June. During the first three weeks of June 2013 we found five additional nests, all inactive when found, but almost certainly belonging to Scallop-breasted Antpitta based on similarities in architecture with the two active nests (see below) and based on the experience of HFG with the nests of other *Grallaricula*. Three of these were very close to nest 1 and probably belonged to the same pair. One was close to nest 2, and the final inactive nest was at 1,943 m near the crest of a ridge c.1.1 km south-east of nest 2 (10°26′15″N, 68°47′01″W).

All nests were architecturally very similar, being shallow, open cups composed externally of moss and neatly lined with dark fibres and rootlets (Fig. 1). A conspicuous
detail common to all nests was the presence, below the cup, of a sparse platform of long (c.100 cm) unbranched twigs or leaf petioles that were clearly arranged to provide support for the main cup. These bases of supporting twigs were very similar to those described for nests of Peruvian Antpitta *G. peruviana* (Greeney 2009) and Ochre-breasted Antpitta (Greeney et al. 2012). Measurements for nests 1 and 2, respectively were: external diameter (measured at perpendicular angles), 111 × 108 mm, 115 × 110 mm; external height (thickness), 53–55 mm, c.65 mm; internal diameter, 78 × 70 mm, 70 × 70 mm; internal depth, 38 mm, 40 mm. All nests were in the understorey of humid montane forest typical of the region, with a closed canopy, c.15–25 m high, and dominated by trees in the families Apocynaceae, Elaeocarpaceae, Cunoniaceae and Podocarpaceae. The understorey surrounding the nests was fairly open and dominated by Rubiaceae, Piperaceae and ferns. The two active nests were built 86 cm and 97 cm above ground, while inactive nests ranged in height from 55 cm to 119 cm. Mean (± SD) height of all nests was 92.20 ± 23.99 cm. Nest 1 was in a small sapling (1.6 m tall), supported basally by several small branches and by the petioles of epiphytic ferns growing on the side of the substrate tree. Nest 2 was in a Rubiaceae and supported by several small branches. The remaining (inactive nests) were all in very similar situations.

The eggs in nest 2 were short subelliptical, with a white ground colour sparsely flecked and blotched with various shades of brown and lavender. We did not measure them. Adult behaviour while we were in the vicinity of the nest was ‘nervous’; they frequently changed perches (thin horizontal branches 0.5–1.5 m above ground), rhythmically twitching their lower bodies in typical *Grallaricula* fashion (Greeney 2018) and occasionally flicking their wings. The only vocalisations noticed during our presence at the nest were the typical, drawn-out, somewhat melancholy notes described by Verea (2004), but these were always made while the calling individual was hidden in the undergrowth.

Figure 1. Nest of Scallop-breasted Antpitta *Grallaricula loricata*, Sierra de Aroa National Park, Yaracuy, Venezuela, 21 June 2013 (Jhonathan Miranda)
Based on comparisons with nestlings of known age of other *Grallaricula* (see Greeney *et al.* 2010, Greeney 2012), we estimate that the nestlings in nest 1 were c.8–12 days old when the nest was found. They were mostly covered in dense, wool-like, rufescent or rusty-brown down, wings with more developed flight feathers and prominent orange commissures, all similar in form and colour to that of other *Grallaricula* nestlings (Greeney 2012). We recorded the following measurements from each nestling: wing 13.6 mm, 13.5 mm; bill depth at nares 13.4 mm, 13.1 mm; bill width at nares 14.4 mm, 14.8 mm; bill length from front of nares 14.8 mm, 14.6 mm; exposed culmen 18.8 mm, 18.3 mm; tarsus 20.9 mm, 20.5 mm.

Discussion

Although the taxonomic affinities of Scallop-breasted Antpitta have not been investigated, based on plumage and vocal similarities it is probably closely allied to Peruvian and Ochre-fronted Antpittas, which two have been suggested to form a superspecies (Graves *et al.* 1983). Unsurprisingly, therefore, the nest, egg and nestling of Scallop-breasted Antpitta appear very similar to those of Peruvian Antpitta (Greeney *et al.* 2004a,b). The relatively shallow, open-cup nest agrees in general form with all other described *Grallaricula* nests, all of which also have a well-defined lining of dark, flexible fibres. In being composed externally of moss and mossy twigs, it is most similar to Peruvian (Greeney 2009), Ochre-breasted (Holley *et al.* 2001, Maillard-Z. & Vogel 2003, Greeney *et al.* 2012) and Crescent-faced Antpittas (Greeney & Jipa 2012), and differs from the leaf, stick and petiole exterior of nests of Slate-crowned *G. nana* (Greeney & Sornoza 2005) and Rusty-breasted Antpittas (Schwartz 1957, Niklison *et al.* 2008). Although the process of nest construction has not been observed, the nest of Scallop-breasted Antpitta clearly consists of a loose platform of twigs supporting the well-formed nest cup, a key architectural detail that may turn out to unify the nests of all *Grallaricula* (Greeney *et al.* 2008, 2012, Greeney 2009).

With respect to the form and coloration of the eggs, those of Scallop-breasted Antpitta are also consistent with other descriptions within the genus *Grallaricula*. Their whitish to beige ground colour and variable markings of brown, cinnamon and lavender are well aligned with egg descriptions for Ochre-breasted Antpitta (Greeney *et al.* 2012), Hooded Antpitta *G. cucullata* (Selater & Salvin 1879, Oates & Reid 1903), Peruvian Antpitta (Greeney *et al.* 2004a), Slate-crowned Antpitta (Greeney & Sornoza 2005) and Sucre Antpitta *G. cumanensis* (Kreuger 1968), but differ from eggs of Rusty-breasted Antpitta (Schwartz 1957, Niklison *et al.* 2008), the only member of the genus known to have eggs with a pale greenish ground colour. Similarly, mid-aged nestlings’ dense covering of rusty-brown down supports the suggested uniformity of nestling appearance in the genus (Greeney 2012, 2018, Greeney & Jipa 2012) and the resemblance of *Grallaricula* nestlings to those of *Hylopezus* antpittas (Greeney *et al.* 2016, Greeney 2018).

Our observation of active nests in May and June suggests that the reproductive period of March–May suggested by previous authors (Schäfer & Phelps 1954, Schäfer 1969) may extend at least through June, perhaps concluding with the onset of the drier months in the coastal mountains of Venezuela. Based on the moult and reproductive condition of adults captured in mist-nets, Verea (2004) concluded that Scallop-breasted Antpitta may breed during most of the year. Further sampling is needed to confirm this, but it is possible that Scallop-breasted Antpitta may have two reproductive peaks during the year, as suggested by nesting records of the ecologically similar Peruvian Antpitta (Greeney 2006, 2009).

Acknowledgements

We thank the Museum of Zoology, Univ. of Carabobo, especially its technicians Franger García, Antonio Perez and Hector Mendoza, for logistical assistance in the field. For unconditional support during all phases...
of the project we thank Elizabeth Valero, ‘Mr Guache’, Hector López, Frank Espinoza and Jorge Pérez. For supplying rings we thank the Sociedad Conservacionista Audubon de Venezuela. We are grateful to all of the people who helped with field trips and who accompanied us on many of them, among them Daniel Llavaneras, José Grande, Mariana Ayala, Iván Lau, José Martines, Oriana Vasquez, Génesis Cardozo, Fernando Machado, María Pinto, Edward Camargo, Marcos Salcedo, Disleydis Petit, Wendy Bolaños, Douglas Mora, Mariana Delgado and Alejandro Moreno. Chris Sharpe and Guy Kirwan suggested helpful revisions to the submitted manuscript. HFG was supported during the preparation of this manuscript by a fellowship from the John Simon Guggenheim Memorial Foundation, and is grateful for the continued support of Field Guides Inc., Matthew E. Kaplan, John V. Moore, and the Population Biology Foundation.

References:

Kreuger, R. 1968. Some notes on the oology of members of the family Formicariidae (antbirds); family Conopophagidae (gnat-eaters or antpipits); family Rhinocryptidae (tapaculos); family Cotingidae (cotingas); family Pipridae (Manakins). Öölologis’ Rec. 42: 9–15.

© 2018 The Authors; This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Addresses: Jhonathan E. Miranda T., Postgrado de Ecología, Facultad de Ciencias de la Universidad Central de Venezuela, Caracas, Venezuela, e-mail: biojhonathan@gmail.com. Karen E. López. V., Museo de Zoología de la Universidad de Carabobo, Valencia, Venezuela, e-mail: karen.lopez.valero@gmail.com. Harold F. Greeney, Yanayacu Biological Station & Center for Creative Studies, c/o Foch 721 y Amazonas, Quito, Ecuador, e-mail: revmmoss@yahoo.com
First record of Red-throated Pipit *Anthus cervinus* in Central America

by Esteban Matías & Knut Eisermann

Received 16 July 2018; revised 23 September 2018; published 14 December 2018

http://zoobank.org/urn:lsid:zoobank.org:pub:63AB8E61-6E32-4D8B-A1B4-95ACA221046C

On 15 April 2018, EM photographed a pipit in rocky grassland at Sierra Los Cuchumatanes, 2 km east of La Capellanía (15°24′38.7″N, 91°25′55.3″W), dpto. Huehuetenango, at 3,100 m (Fig. 1). The rufous face, supercilium, throat and upper breast are unique in the genus *Anthus* to adult Red-throated Pipit *A. cervinus* (Alström *et al.* 2003, Tyler 2004). Although the sexes cannot be distinguished with certainty, those with extensive rufous and only weak streaking on the upper breast are probably males (Alström *et al.* 2003).

The observation is notable because it is the first record of Red-throated Pipit in Central America. In the Neotropics, the species was previously reported only in central and southern Mexico and Ecuador. Mexican records away from the Baja Peninsula include singles in the Pacific slope lowlands of Michoacán in April 1988 (Howell & Webb 1989), Colima in March 1992 (Howell & Webb 1995) and Oaxaca in November 2008 (Gómez de Silva 2009). In coastal Ecuador, a first-winter was documented in March 2008 (Brinkhuizen *et al.* 2010).

Figure 1. Adult Red-throated Pipit *Anthus cervinus*, Sierra Los Cuchumatanes, dpto. Huehuetenango, Guatemala, 15 April 2018: (a) rocky grassland habitat with the bird in the centre of the image, (b) close-up view of the bird (Esteban Matías)
Red-throated Pipit breeds mainly in Arctic tundra from northern Europe (in Scandinavia) to northern Asia (Dementiev & Gladkov 1954, Glutz von Blotzheim & Bauer 1985), but also in Alaska (Kessel & Gibson 1978). Wintering areas are mainly in the Old World tropics. Western populations (breeding from Scandinavia to the Taimyr Peninsula) are thought to winter in Africa, and eastern populations (east of the Taimyr to Alaska) mainly in South-East Asia (Glutz von Blotzheim & Bauer 1985). Some individuals of the latter population migrate instead south along the eastern Pacific seaboard, indicated by records in the western USA (Roberson 1980, King 1981, Hamilton et al. 2007), Mexico (Howell & Webb 1989, 1995, Erickson et al. 2013), Ecuador (Brinkhuizen et al. 2010) and now Guatemala. The species is now observed almost annually, sometimes in autumn flocks of up to 15 birds, on the Baja California Peninsula, where small numbers winter in the south in some years (Erickson et al. 2012; S. N. G. Howell in litt. 2018). Bird migration routes can be altered by unusual weather conditions (e.g. strong winds), but also by evolutionary processes, e.g. access to more favourable wintering grounds (Berthold et al. 1992, Berthold 2001). Causes of the apparent recent increase in numbers of Red-throated Pipit wintering in the Americas are unknown. It is possible that the species is more frequent in Middle America than the few records suggest. All pipits in the region should be well documented, because especially first-winter birds represent identification challenges (see Brinkhuizen et al. 2010). Other long-distance migrant Anthus could exceptionally occur in Central America, namely Sprague’s Pipit A. spragueii which winters in Mexico (Howell & Webb 1995), and three Old World species reported as vagrants in North America (AOU 1998): Tree Pipit A. trivialis, Olive-backed Pipit A. hodgsoni and Pechora Pipit A. gustavi.

Acknowledgements
We thank Steve N. G. Howell and Guy M. Kirwan for comments on the manuscript and editorial input.

References:

Addresses: Esteban Matías, Coordinator of Commissions of Natural Resources in the Parque Regional Municipal “K’ojlab’l Tze’ Te’ Tnom Todos Santos Cuchumatán”, Consejo Nacional de Áreas Protegidas (CONAP), Todos Santos Cuchumatán, dpto. Huehuetenango, Guatemala, e-mail: esteban.matias@hotmail.com. Knut Eisermann, PROEVAL RAXMU Bird Monitoring Program, Cobán, dpto. Alta Verapaz, Guatemala, e-mail: knut.eisermann@proeval-raxmu.org
First record of Crested (or Crested-type) Honey Buzzard
Pernis ptilorhynchus for Greece

by Stylianos P. Zannetos, Yiannis Zevgolis & Triantafyllos Akriotis

Received 11 September 2018, revised 12 October 2018, published 14 December 2018

Crested Honey Buzzard _Pernis ptilorhynchus orientalis_ is a long-distance migrant that breeds across southern Siberia to Sakhalin and Japan, and winters mainly in South-East Asia, Indonesia and the Philippines (Higuchi _et al._ 2005, Wells 2010, Orta _et al._ 2018). In southern Siberia, at its western limit, the breeding range partially overlaps with that of European Honey Buzzard _P. apivorus_ (Stepanyan 1983, Ferguson-Lees & Christie 2001). Six subspecies of Crested Honey Buzzard are recognised, but only _orientalis_ is a migrant (Orta _et al._ 2018). The species was recorded for the first time in the Western Palearctic at Borçka, north-east Turkey, in September 1979 (Laine 1996) and then at Eilat, Israel, in May 1994 (Shirihai 1994). _P. ptilorhynchus_ is now considered regular in small numbers on passage through Israel, mainly at Eilat, which is a major passage bottleneck for European Honey Buzzards (Shirihai 1994). Fifteen to 20 individuals are recorded every spring, mainly in May, with 5–12 in autumn, mainly in mid September (Babbington & Campbell 2016). There have also been many recent records of _P. ptilorhynchus_ at Batumi (Georgia) where the first to be officially accepted was in autumn 2007 (Abuladze 2013). Since then, the species has been identified annually at Batumi, with a total of 163 records until 2018 and a max. 51 birds in 2013 (https://www.batumiraptorcount.org/migration-count-data#annual-total).

It is presumed that those Crested Honey Buzzards recorded in Israel, and elsewhere in the Middle East in spring, joined flocks of _P. apivorus_ wintering in Africa (Ferguson-Lees & Christie 2001). Many records have been suspected to be potential hybrids with _P. apivorus_ (Babbington & Campbell 2016).

In Europe, Crested Honey Buzzard has been fully documented just twice: on Cyprus in October 2012 (Harrison 2014) and in Italy on 18 May 2011, at the Strait of Messina between Sicily and the mainland (Scuderi & Corso 2011).

On 2 May 2018, near the village of Alyfanta (39°06'04"N, 26°31'45"E) on Lesvos, 4 km from the largest urban centre on the island (Mytilini), we observed an adult male Crested (or Crested-type) Honey Buzzard. It was watched as it soared, gradually gaining height, for c.3 minutes at a distance of c.150 m from the observers (SPZ, YZ). SPZ managed to take 12 photographs of the bird (Figs. 1–3). Subsequently, it headed south-west and was not seen again. Identification was made by the authors, following the observation, based on the photographs. This is the first documented record for Greece and the third to be accepted for Europe.

P. ptilorhynchus can be easily confused with _P. apivorus_. In this case, the bird’s structure was obviously different: heavier bodied, slightly larger and bulkier (more eagle-like) compared with _P. apivorus_. Furthermore, its wings appeared broader and the tail shorter than that of European Honey Buzzard. The absence of the diagnostic carpal patch of _P. apivorus_, the six clearly fingered primaries protruding from the trailing edge of the wing, and the dark tail with a broad white bar in the centre of the undertail, are diagnostic features of _P. ptilorhynchus_ (Ferguson-Lees & Christie 2001, Svensson _et al._ 2009, Forsman 2016). The inner secondaries show two well-defined bars while a third bar is visible on the inner primaries and outer secondaries. The head is grey with a pale throat, bordered by a
dark ‘gorget’ that contrasts with the pale sandy-ochre underparts and underwings. This plumage is commonest in adult males according to Forsman (2016).

Alternatively, the possibility of hybridisation between *P. apivorus* and *P. ptilorhynchus* (Faveys 2011, Forsman 2016) and some structural and plumage features that do not match perfectly with *P. ptilorhynchus* made us consider the possibility that the bird was a potential hybrid. Specifically, the bird shows a quite rounded wingtip, rather than the blunt tip of Crested Honey Buzzard (p5 is not clearly longer). Furthermore, the wing is typically more rectangular in Crested Honey Buzzard, but in the Greek bird appears broadest at the carpal joint, tapering towards the body and tip. The intermediate underwing and tail barring, and possible hint of a darker carpal area, typical of supposed hybrids, reinforce this hypothesis (D. Forsman in litt. 2018).

However, the lack of genetic research into the hybridisation question, in parallel with the fact that *P. apivorus* and *P. ptilorhynchus* are (a) not known to form mixed pairs in the region of overlap (Mosquitin 1973, Kislenko 1974, Stepanyan 1983), and (b) are not even each other’s closest relatives (Gamauf & Haring 2004), raises doubts as to whether it is justifiable to discuss hybrids between the two species. The unquestionable similarity of *P. ptilorhynchus* to *P. apivorus* and, for most European observers, the lack of understanding of their distinguishing features and especially their morphological variability, lead us to suspect that *P. ptilorhynchus* may be a more frequent vagrant to parts of south-east Europe than is currently perceived. More attention should be paid along the major raptor passage flyways in the Western Palearctic to better understand the western limit of Crested Honey Buzzard’s migration route. Furthermore, genetic analysis is critical to provide a more solid basis for discussing hybridisation between these two *Pernis* species.

Acknowledgements
We thank Killian Mullarney and Dick Forsman for their help in identifying the bird, Rob Bijlsma and Andrea Corso for their very useful suggestions and comments on the submitted draft, and Apostolis Christopoulos, Eleni Galinou, Fanis Theophanopoulos and the members of the Hellenic Rarities Committee, headed by George Handrinos, for accepting the record.

References:

Addresses: Stylianos P. Zannetos, Biodiversity Conservation Laboratory, Dept. of Environment, University Hill, Mytilene, Lesvos, 81100, Greece, e-mail: stylianoszannetos@gmail.com. Yiannis Zevgolis, Biodiversity Conservation Laboratory, Dept. of Environment, University Hill, Mytilene, Lesvos, 81100, Greece, e-mail: zevgolis@env.aegean.gr. Triantafyllos Akriotis, Biodiversity Conservation Laboratory, Dept. of Environment, University Hill, Mytilene, Lesvos, 81100, Greece, e-mail: takr@aegean.gr
LIST OF AUTHORS AND CONTENTS

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKRIOTIS, T.</td>
<td>See ZANNETOS, S. P.</td>
</tr>
<tr>
<td>ALLPORT, G.</td>
<td>Notable recent records of terns, gulls and skuas in southern Mozambique including the first country records of Black Tern Chlidonias niger.</td>
</tr>
<tr>
<td>ALLPORT, G.</td>
<td>First records of Sharp-tailed Sandpiper Calidris acuminata for Mozambique and continental Africa, and additional records of Pectoral Sandpiper C. melanotos in Mozambique, with comments on identification and patterns of occurrence.</td>
</tr>
<tr>
<td>ARAUJO MONTEIRO-FILHO, E. L.</td>
<td>See CHUPIL, H.</td>
</tr>
<tr>
<td>ARCE, A. A. F.</td>
<td>See SÁNCHEZ†, J. E.</td>
</tr>
<tr>
<td>ARREDONDO, C.</td>
<td>See RAMÍREZ, W. A.</td>
</tr>
<tr>
<td>AVENDAÑO, C.</td>
<td>See EISERMANN, K.</td>
</tr>
<tr>
<td>BARCENA-GOYENA, B.</td>
<td>See STUDER, A.</td>
</tr>
<tr>
<td>BESSON, L.</td>
<td>See VAN GROUW, H.</td>
</tr>
<tr>
<td>BLACK, A.</td>
<td>See CAKE, M.</td>
</tr>
<tr>
<td>BOESMAN, P., CLAESSENS, O., COSTA, T. V. V., PELLETIER, V., INGELS, J. & RENAUDIER†, A.</td>
<td>Songs of Rusty Tinamou Crypturellus brevirostris and duetting in Crypturellus species.</td>
</tr>
<tr>
<td>BÔLLA, D. A. S., GAVA JUST, J. P., ROMAGNA, R. S., RÉUS VIANA, I. & ZOCCHE, J. J.</td>
<td>First record of a four-egg clutch of Collared Forest Falcon Micrastur semitorquatus, with notes on a nest in a building in southern Brazil.</td>
</tr>
<tr>
<td>BRADLEY, J., HENTZE, N. & GUARNIERI, D.</td>
<td>A range extension for Shelley’s Sparrow Passer shelleyi in south-west Kenya, with comments on local sympatry with Kenya Rufous Sparrow P. rufocinctus.</td>
</tr>
<tr>
<td>BURNER, R. C.</td>
<td>See SHAKYA, S. B.</td>
</tr>
<tr>
<td>CAKE, M., BLACK, A. & JOSEPH, L.</td>
<td>The generic taxonomy of the Australian Magpie and Australo-Papuan butcherbirds is not all black-and-white.</td>
</tr>
<tr>
<td>CARILLO LÓPEZ, R.</td>
<td>See RAMÍREZ, W. A.</td>
</tr>
<tr>
<td>CHAPARRO-HERRERA, S.</td>
<td>See RAMÍREZ, W. A.</td>
</tr>
<tr>
<td>CHUPIL, H. & ARAUJO MONTEIRO-FILHO, E. L.</td>
<td>History of the Scarlet Ibis Eudocimus ruber in south and south-east Brazil.</td>
</tr>
<tr>
<td>CLAESSENS, O.</td>
<td>See BOESMAN, P.</td>
</tr>
<tr>
<td>COLLAR, N. J. & KIRWAN, G. M.</td>
<td>In support of Pinto: Pernambuco as the type locality of Thalurania watertonii.</td>
</tr>
<tr>
<td>CONEJO-BARBOZA, K.</td>
<td>See SÁNCHEZ†, J. E.</td>
</tr>
<tr>
<td>CORSO, A.</td>
<td>See JANNI, O.</td>
</tr>
<tr>
<td>COSTA, T. V. V.</td>
<td>See BOESMAN, P.</td>
</tr>
<tr>
<td>DICKINSON, E. C.</td>
<td>See AIMASSI, G.</td>
</tr>
<tr>
<td>EISERMANN, K. & AVENDAÑO, C.</td>
<td>An update on the inventory, distribution and residency status of bird species in Guatemala.</td>
</tr>
<tr>
<td>EISERMANN, K.</td>
<td>See MATIÁS, E.</td>
</tr>
<tr>
<td>FERNÁNDEZ, J. A.</td>
<td>See QUINTANA CHÁVEZ, M. A.</td>
</tr>
<tr>
<td>GAVA JUST, J. P.</td>
<td>See BÔLLA, D. A. S.</td>
</tr>
</tbody>
</table>
GREENEY, H. F. See MIRANDA T., J. E.
GUARNIERI, D. See BRADLEY, J.
GUILHERME, E., MARQUES, E. L. & SANTOS, G. S. Avifauna of a white-sand vegetation enclave in north-west Rondônia, Brazil: relevant records, body mass and morphometrics 286
HALLEY, M. R. The ambiguous identity of *Turdus mustelinus* Wilson, and a neotype designation for the Veery *Cattharus fuscens* (Stephens) .. 79
HARYOKO, T. See SHAKYA, S. B.
HENTZE, N. See BRADLEY, J.
INGELS, J. See BOESMAN, P.
JANNI, O., CORSO, A. & VIGANÒ, M. Range extensions for White-shouldered Antshrike *Thamnophilus aethiops*, Imeri Warbling Antbird *Hypocnemis flavescens* and Black-headed Antbird *Percnostola rufifrons* along the Putumayo River in Colombia, and their biogeographical significance .. 244
JOSEPH, L. See CAKE, M.
KIRKCONNELL, A. See KIRKCONNELL POSADA, A.
KIRKCONNELL POSADA, A., KIRKCONNELL, A. & KIRWAN, G. M. First record of White-faced Ibis *Plegadis chihi* in the West Indies ... 272
KIRWAN, G. M., SHIRIHAI, H. & SCHWEIZER, M. A morphological revision of Mascarene Swiftlet *Aerodramus francicus*, with the description of a new subspecies from Reunion 117
KIRWAN, G. M. See COLLAR, N. J.
KIRWAN, G. M. See KIRKCONNELL POSADA, A.
LAVERDE-R., O. See AVENDAÑO, J. E.
LEVANDOSKI, G. See MILLER, E. T.
LOAIZA, J. M. See FREILE, J. F.
LOPERA-SALAZAR, A. See RAMÍREZ, W. A.
LÓPEZ, K. See MIRANDA T., J. E.
LÓPEZ-O., J. P. See AVENDAÑO, J. E.
MARQUES, E. L. See GUILHERME, E.
MARTIN, T. E. See RASAMISON, S.
MATIÁS, E. & EISERMANN, K. First record of Red-throated Pipit *Anthus cervinus* in Central America ... 383
MCCORMACK, J. E. See MILLER, E. T.
MCKINNEY, B. R. See MILLER, E. T.
MELLIER, B. See VAN GROUW, H.
MILLER, E. T., MCCORMACK, J. E., LEVANDOSKI, G. & MCKINNEY, B. R. Sixty years on: birds of the Sierra del Carmen, Coahuila, Mexico revisited .. 320
MIRANDA T., J. E., LÓPEZ, K. & GREENEY, H. F. First description of the nest, eggs and nestlings of Scallop-breasted Antpitta *Grallaricula loricata* .. 378
MOLINA, P. See FREILE, J. F.
MORENO-CONTRERAS, I. See QUINTANA CHÁVEZ, M. A.
NETO, M. N., PEREIRA, F. D., WUO, A. L. M. & NETO, C. Z. Third record of the Critically Endangered Brazilian Merganser *Mergus octosetaceus* in São Paulo state, south-east Brazil, after almost two centuries .. 131
NETO, C. Z. See NETO, M. N.
PALFREY, R. H. See RASAMISON, S.
PELLETIER, V. See BOESMAN, P.
PEREIRA, F. D. See NETO, M. N.
PRAWIRADILAGA, D. M. See SHAKYA, S. B.

QUINTANA MARTÍNEZ, G. See QUINTANA CHÁVEZ, M. A.

RAMÍREZ, W. A., ARREDONDO, C., CARILLO LÓPEZ, R., LOPERA-SALAZAR, A. & CHAPARRO-HERRERA, S. Range extensions for Yellow-crowned Elaenia Myiopagis flavivertex and Dugand’s Antwren Herpsilochmus dugandi in eastern Colombia. 6

RASAMISON, S., RAVELOSON, B. A., PALFREY, R. H. & MARTIN, T. E. Records of Van Dam’s Vanga Xenopirostris damii in Mariarano forest, north-west Madagascar. 275

RAVELOSON, B. A. See RASAMISON, S.

RENAUDIER†, A. See BOESMAN, P.

RÉUS VIANA, I. See BÔLLA, D. A. S.

ROMAGNA, R. S. See BÔLLA, D. A. S.

ROOKMAAKER, K. & VAN WYHE, J. A price list of birds collected by Alfred Russel Wallace inserted in The Ibis of 1863. 335

SÁNCHEZ, C. See SÁNCHEZ†, J. E.

SÁNCHEZ†, J. E., CONEJO-BARBOZA, K., SÁNCHEZ, C., ARCE, A. A. F., TENORIO, J. & SANDOVAL, L. Nest architecture and parental care in Ruddy Treerunner Margarornis rubiginosus. 93

SANDOVAL, L. See SÁNCHEZ†, J. E.

SANTOS, G. S. See GUILHERME, E.

SCHWEIZER, M. See KIRWAN, G. M.

SHAKYA, S. B., HARYOKO, T., BURNER, R. C., PRAWIRADILAGA, D. M. & SHELTON, F. H. Preliminary assessment of community composition and phylogeographic relationships of the birds of the Meratus Mountains, south-east Borneo, Indonesia. 45

SHELTON, F. H. See SHAKYA, S. B.

SHIRIHAI, H. See KIRWAN, G. M.

SOTO CRUZ, R. A. See QUINTANA CHÁVEZ, M. A.

STUDER, A. & BARCENA-GOYENA, B. Nesting biology of Squirrel Cuckoo Piaya cayana at two localities in eastern Brazil. 238

TENORIO, J. See SÁNCHEZ†, J. E.

VAN GROUW, H. Streptopelia risoria and how Linnaeus had the last laugh. 11

VAN GROUW, H., BESSON, L. & MELLIER, B. A black page in the French partridge’s history: the melanistic variety of Red-legged Partridge Alectoris rufa. 360

VAN WYHE, J. See ROOKMAAKER, K.

VIGANÒ, M. See JANNI, O.

WUO, A. L. M. See NETO, M. N.

ZANNETOS, S. P., ZEVGOLIS, Y. & AKRIOTIS, T. First record of Crested (or Crested-type) Honey Buzzard Pernis ptilorhynchus for Greece. 386

ZEVGOLIS, Y. See ZANNETOS, S. P.

ZOCCHE, J. J. See BÔLLA, D. A. S.
INDEX TO SCIENTIFIC NAMES

All generic and specific names (of birds only) are indexed. New specific and subspecific names are indexed in bold print under generic, specific and subspecific names. Illustrations and figures are numbered in italics.

abeillei, Abellia 209, 210
Abellia abeillei 209, 210
abnormis, Sasia 48, 58, 61
Acroscopus supercilialis 59
acicus, Aegolius 324
Accipiter bicolor 233
Accipiter chionogaster 150
Accipiter cooperii 323
Accipiter fasciatus 343
Accipiter gentilis 323, 328
Accipiter poliogaster 341
Accipiter soloensis 341
Accipiter striatus 150, 323
Acridotheres cinereus 338
Actenoides concretus 58
Actitis hypoleucos 342
Actitis macularius 256, 323
acuminata, Calidris 307–317, 309, 311–313
acuta, Anas 322
acutipennis, Chordeiles 160, 324
aedon, Troglodytes 259, 325
Aegithina viridissima 48
Aegolius acadicus 324
Aegolius ridgwayi 178
aenea, Chloroceryle 256
aeneus, Ducula 328
Aeralatus, Pteruthius 49, 58, 61
Aerodramus elaphrus 117, 124
Aerodramus francicus 117–130, 121–126
Aerodramus francicus saffordi subs. nov. 122
Aeronautes montivagus 232
Aeronautes saxatalis 324
Aethereus, Phaethon 169
Aethineus, Molothrus 328
Aerodramus elaphrus 117, 124
aethiops, Thamnophilus 244–259, 247
Aethopyga siparaja 60
Aethopyga temminckii 60
affinis, Aythya 322
affinis, Caprimulgus 55
affinis, Collocalia 58
affinis, Empidonax 321
affinis, Terpsiphone 48
affinis, Thapsinillas 339
affinis, Veniliornis 257
Agelaius phoeniceus 328
Amphiprion affinis 327
Aix sponsa 322
ajaja, Platalea 175
Akletos melanoceps 258
Alauda tenuirostris 137
alba, Ardea 256, 290, 322
alba, Ciconia 137
alba, Cygnus 168
alba, Zonotrichia 327
alba, Tyto 324
albeola, Bucephala 322
albicautus, Geranoaetus 233, 236, 323, 328
albicollis, Nyctidromus 291, 324, 329
albicollis, Rhipidura 48, 59, 62
albicollis, Turdus 259
albicollis, Zonotrichia 327
albifrons, Henicophas 337, 342
albifrons, Sterna 103
albigularis, Empidonax 185
albitoris, Polioptila 191
albiventer, Tachycineta 259, 294
albiventris, Turtur 18
alboniger, Nisaetus 57
albonotatus, Buteo 210, 323
albus, Eudocimus 174
Alcedo euryzona 58
Alcedo meninting 339
Alcippe brunneicauda 48, 59, 64, 65
alcyon, Megaceryle 324
aleto, Miyagia 340
Alectoris chukar 376
alexandri, Archilochus 324
alexandri, Psittacula 55
Alisterus amboinensis 338, 339, 341
alixii, Clytoctantes 235
Alophoixus 53
Alophoixus bres 48, 49, 51, 53, 59
Alophoixus ochraceus 49, 50, 51, 55, 59, 62
Alophoixus phaeocephalus 48
alpestris, Eremophila 325
amandava, Amandava 343
Amandava amandava 343
amaurochalinus, Turdus 289, 294, 301
Amazona amazonica 257
amazona, Chloroceryle 256, 291
American, Aythya 151, 322
American, Aythya 151, 322
American, Certhia 325, 332
Amazona 324
Amazona ochrocephala 292
Amazona xantholora 211
Amazona caniceps 292
Amazona festiva 257
Amazona ochrocephala 292
Amazona xantholora 211
Amazona chrysochroa 292
Amazona chrysochroa 292
Amazona chrysochroa 292
Ambigua, Myrmotherula 252
Amboinensis, Alisterus 338, 339, 341
Amazona 324
Amazona 324
Amazona ochrocephala 292
Amazona xantholora 211
Amazona chrysochroa 292
Amazona 324
Amazona 324
Amazona xantholora 211
Amazona 324
Ambigua, Myrmotherula 252
Amboinensis, Alisterus 338, 339, 341
Americanus, Fusicapilla 327
Americanus, Ibycter 211, 213, 257, 292
Americanus, Numenius 323
Ambigua, Myrmotherula 252
Amboinensis, Macropygia 339
Americanus, Ibycter 211, 213, 257, 292
Americanus, Numenius 323
Americanus, Pygica 58
Scientific Names Index

Ammodramus aurifrons 259, 294
Ammodramus savannarum 199, 327
amoena, Passerina 327
Amphispiza bilineata 327
Anabacerthia ruficaudata 292
Anacardium excelsum 233
anaethetus, Onychoprion 168
anais, Mino 337, 342
analogus, Microptilotis 342
Anas acuta 322
Anas crecca 151, 322
Anas diazi 319
Anas platyrhynchos 322
Ancistrops strigilatus 258
angolensis, Sporophila 259, 294, 302
angustifrons, Psarocolius 259
ani, Crotophaga 242, 256, 291
Anorrhinus galeritus 58
Anous stolidus 103
Anous tenuirostris 101, 102, 103
Anser caerulescens 322
antarcticus, Stercorarius 101, 114
anthracinus, Buteogallus 211, 233, 321, 323
Anthreptes malacensis 60
Anthus cervinus 383–385
Anthus hodgsoni 384
Anthus lutescens 383
Anthus rubescens 326, 383
Anthus spraguei 384
Anthus trivialis 384
Antigone canadensis 323
Antrostomus arizonae 161, 211, 324
Antrostomus badius 161
Antrostomus ridgwayi 161
Antrostomus vociferus 161, 211, 213
Aphelocoma ultramarina 333
Aphelocoma wollweberi 325
Aphelocoma woodhouseii 321
apivorus, Pernis 386, 387
Aplonis minor 343
Aplonis mysolensis 338–342
Aprosmictus jonquillaceus 342
Aquila chrysaetos 322
Ara 355
Ara ararauna 292
Ara chloropterus 292
Arachnothera 55
Arachnothera everetti 48, 49, 54, 60, 66
Arachnothera flavigaster 60
Arachnothera hypogrammicum 49, 60, 66
Arachnothera juliae 52
Arachnothera longirostra 49, 60, 65, 66
Arachnothera modesta 60
Ara macao 292
Aramides axillaries 165
Aramides axillaris 166
ararauna, Ara 292
Ara severus 257, 292
Aratinga 355
Aratinga weddellii 292
Archilochus alexandri 324
Archilochus colubris 324
arcuata, Dendrocygna 338, 343
Ardea alba 256, 290, 322
Ardea cocoi 290
Ardea herodias 322
Ardenna creatopus 170
Ardenna pacifica 170
Ardeola idae 276
Ardeola speciosa 338
ardesiacus, Thamnomanes 257
arenarum, Sublegatus 235
argenteus, Cracticus 350, 351
arizonae, Antrostomus 161, 211, 324
aromaticus, Treron 337, 339
Arremon rufirigatus 196
Arses telescopthalmus 341
Artamus 351
Artamus cinereus 343
Artamus leucoryn 341
Artamus monachus 338
Artamus spp. 346
asiatica, Zenaida 159, 323, 329
Asio flammeus 213, 324
asio, Megascops 324
Asio otus 324
Asio stigius 177
asparasia, Leptocoma 338–340, 342
assimilis, Rhipidura 341
ater, Daptrius 257, 291
ater, Manucodia 342
ater, Molothrus 202, 328
Athene cunicularia 213, 291, 324
atra, Chalcopsitta 337, 341
atrus, Coragyps 256, 290, 322
atricapilla, Lonchura 194
atricapilla, Vireo 325, 330
atricapilla, Zosterops 49, 60, 63
atricipes, Pycnonotus 59
atricipes, Saltator 209
atricipes, Spinus 195
atricilla, Leucophaeus 168, 323, 329
atricristatus, Baeolophus 325
atrimentalis, Phaethornis 256
atrogularis, Clytoctantes 289, 292, 295, 300
atrogularis, Orthotomus 59
atrogularis, Spizella 327
atronitens, Xenopipo 286, 289, 293, 295, 299, 301
atro-rufa, Perdix 361, 362–364, 367, 370
Atro-rufa, Perdix 360
atrothorax, Myrmophylax 292
atrovirens, Lalage 341
Atticora fasciata 259
Atilla citriniventris 250, 258
Atilla spadiceus 258
auduboni, Setophaga 150
aura, Cathartes 290, 322, 328
aurantiiventrix, Heterocercus 252, 253
aurantioatrocristatus, Griseotyrannus 289, 293
auratus, Capito 257
auratus, Colaptes 324
aurea, Lalage 340
aureus, Jacamerops 257
auricularis, Puffinus 171
aurifrons, Ammodramus 259, 294
aurifrons, Melanerpes 324
aurifrons, Picumnus 291, 300
Auriparus flaviceps 325
auritus, Phalacrocorax 173, 322
Scientific Names Index

Automolus infuscatus 258
Automolus ochrolaemus 258
axillaries, Aramides 165
axillaris, Myrmotherula 8, 257
Aythya affinis 322
Aythya americana 151, 322
Aythya collaris 152, 322
Aythya marila 322
Aythya valisineria 151, 322
azurea, Hypothymis 59
azureus, Ceyx 340
badia, Ducula 57
badius, Antrostomus 161
Baeolophus atricristatus 325
bairdii, Calidris 323
bairdii, Centronyx 327
balasiensis, Cypsiurus 58
banyumas, Cyornis 48, 52, 53, 55, 60, 65
barbarus, Megascops 176
barrabandi, Pyrilia 257
Bartramia longicauda 323
Batrachostomus poliolophus 58
bellii, Vireo 325
bengalensis, Centropus 57, 343
bengalensis, Thalasseus 106–108
Berlepschia rikeri 292
bewickii, Thryomanes 326
biarcuata, Melozone 197
bicolor, Accipiter 233
bicolor, Cyanophaia 267
bicolor, Dendrocygna 150
bicolor, Ducula 339
bidentata, Piranga 327, 332
bidentatus, Harpagus 175
bifasciatus, Psarocolius 294
bilineata, Amphispiza 327
bistriatus, Burhinus 166
Blythipicus rubiginosus 58
Bombycilla cedrorum 326
bonariensis, Molothrus 202
Bontatorus lentiginosus 213, 322
Botaurus lentiginosus 173, 322
Botaurus pinnatus 173
botterii, Peucaea 211
boucardi, Crypturellus 75
bourouensis, Oriolus 339
bourensis, Rhipidura 339
Brachypteryx montana 60
brachyrhynchos, Corvus 325
brachyura, Myrmotherula 257
brachyurus, Buteo 233
brachyurus, Graygadalisculus 257
bracteatus, Dicrurus 339, 341
Branta canadensis 322
brasiliensis, Amazonetta 290
bres, Alopholixus 48, 49, 51, 53, 59
brevirostris, Crypturellus 69–78, 71
breweri, Spizella 327
brodiei, Calandium 58
Brotogeris cyanoptera 257
brunneicapilis, Campylorhynchus 326
brunneicauda, Alcippe 48, 59, 64, 65
brunnescens, Premnoplex 93, 98
brunneus, Pycnonotus 59
Bubo sumatranus 58
Bubo virginianus 324
Bubulcus ibis 256, 290, 322
Bucco tamatia 291, 300
Bucephala albeola 322
Bucephala clangula 322
buceroides, Philemon 342
Buceros rhinoceros 58
Buceros vigil 48, 53, 58
buffoni, Chalybura 232
bullockiorum, Icterus 327
Burhinus bistriatus 166
Buteo albonotatus 210, 323
Buteo brachyurus 233
Buteogallus anthracinus 211, 233, 321, 323
Buteogallus solitarius 321, 323
Buteogallus subtilis 211
Buteogallus urubitinga 233
Buteo jamaiensis 211, 323
Buteo nitidus 232, 290
Buteo plagiatus 323
Buteo swainsoni 175, 323
Butorides virescens 322
cabanisi, Tangara 207
Cacatua moluccensis 339
Cacatua sulphurea 341, 343
cachinnans, Herpetotheres 292
Cacicus cela 259, 294
Cacicus melurinus 48, 57, 60
Cacicus sonneratii 60
Cacicus variolosus 57
careula, Passerina 327
careula, Polioptila 191, 326
careulescens, Anser 327
careulescens, Setophaga 326
careulescens, Sporophila 289, 294, 302
careules, Cyanerpes 259
casius, Thamnomanes 257
cajeli, Ceyx 339
Calmospiza melanocorys 327
Calcarius lapponicus 326, 331
Calcarius ornatus 326
caledonicus, Nycticorax 341
caledonicus, Nycticorax 341
calendula, Regulus 192, 326
Calidris acuminata 307–317, 309, 311–313
Calidris bairdii 323
Calidris ferruginea 323
Calidris melanotos 310
Calidris minutus 310
Calidris nivalis 322
Calidris puncta 322
Calidris pusilla 322
Calidris temmich 322
Calidris tundripus 322
Calidris minutilla 323
Calidris pugnax 213
Calidris tenuirostris 314
Calidris virgata 167
californianus, Geococcyx 323
calliope, Selasphorus 324
Callipepla squamata 322
callizonus, Xenotriccus 183
Calothorax lucifer 324
Calyptomena viridis 58
Calyptomena whiteheadi 52
Calyptorhynchus 355
campanisona, Chamaea 242
campanisona, Myrmothera 258
Campephilus imperialis 321
Campephilus melanoleucos 257, 291
Campephilus rubricollis 257
Campylopterus hemileucurus 209, 210
Campylopterus largipennis 291, 300
Campylorhynchus brunneicapillus 326
Campylorhynchus chiapensis 190
Campylorhynchus tundinus 259, 294
canadensis, Antigone 324
canadensis, Branta 322
canadensis, Sitta 325, 330
canicapillus, Dendrocopos 58
caniceps, Myiopagis 258
cantator, Hypocnemis 248, 249
capicola, Streptopelia 15
, 22
capistratum, Pellorneum 50
, 51, 59, 64
Capito auratus 257
Capito dayi 291
caprata, Saxicola 343
castaneiventris, Sporophila 259
castanotis, Pteroglossus 291
castro, Oceanodroma 171
Centropus bengalensis 57, 343
Centropus goiath 340
Centropus menbeki 342
Centropus sinensis 57
Chalcolpyrus ornatus 258
Ceratopipra erythrocephala 258
Ceratopipra rubrocapilla 292, 300
Cercomacra cinerascens 257
Cercomacroides serva 257
cerviniventris, Pitohui 342
cervinus, Anthus 383–385
Ceyx azureus 340
Ceyx cajeli 339
Ceyx erithaca 48, 58
Ceyx lepidus 340
Chaetura brachyura 256, 291
Chaetura cinereiventris 256
Chaetura pelagica 162
Chalcoptia singalensis 60
Chalchophaps indica 57
Chalchophaps longirostris 343
Chalchophaps stephani 342
Chalcopsitta atra 337, 341
chalybea, Progne 259, 294
Certhia americana 325, 332
certhia, Dendrocolaptes 258
cerviniventris, Pitohui 342
cervinus, Anthus 383–385
Ceyx lepidus 340
Chaetura brachyura 256, 291
Chaetura cinereiventris 256
Chaetura pelagica 162
Chalcoptia singalensis 60
Chalchophaps indica 57
Chalchophaps longirostris 343
Chalchophaps stephani 342
Chalcopsitta atra 337, 341
chalybea, Progne 259, 294
Chalybura buffoni 232
Chamaeza campanisona 242
Charadrius vociferus 323
Charadrius wilsonia 167
Charadrius praticola 340
cheela, Spilornis 57
Chelidoptera tenebrosa 257, 291
cheryway, Caracara 324
chiplensis, Campylorhynchus 190
chihi, Plegadis 174, 272, 272–274, 322
chilensis, Elaenia 289, 293, 301
chilensis, Tangara 259
chilensis, Vireo 289, 294
Chlamydocaera jefferyi 60
Chlamydocaera jefferyi 60
Scientific Names Index

Chlidonias niger 101–116, 113
chloris, Piprites 258
chloris, Thaspinillas 340
chloris, Todiramphus 338, 341
chloris, Zosterops 49, 50, 51, 52, 55, 59, 63
Chloroceryle aenea 256
Chloroceryle amazona 256, 291
Chloroceryle americana 291, 324
Chloroceryle inda 291
Chloroceryle amazona 256, 291
Chloroceryle americana 291, 324
Chlorocharis 49
Chlorocharis emiliae 49
chloronothos, Zosterops 127
Chlorurus, Pipilo 327
Chlophora, Megascops 256, 291
Chondestes grammacus 199, 327
Chondrohierax uncinatus 232
Chordeiles acutipennis 160, 324
Chordeiles minor 160, 245, 256, 324
Chordeiles rupestris 256
Chroicocephalus cirrocephalus 168
Chroicocephalus philadelphia 168, 323
Chrysaetos, Aquila 322
Chrysater, Icterus 201, 202
Chrysocrotaphum, Todirostrum 258
Chrysomela, Carterornis 341
Chrysoparia, Setophaga 326, 331
Chrysopasta, Euphonia 294
Chrysopeplus, Pheucticus 205
Chrysopogon, Psilopogon 58
Chrysops, Cyanocorax 286, 289, 294, 296, 297, 298
Chrysops, Zimmerius 140
chukar, Alectoris 376
Cinclus mexicanus 192
cinerascens, Cercomacra 48, 59, 62
cinerascens, Myiarchus 325, 330
cinerea, Motacilla 343
cinereum, Malacopteron 49, 59, 64
cineres, Acridotheres 338
Cinereus, Artamus 343
cinereus, Crypturellus 70, 74, 76, 78, 255, 290
cinereus, Neopipo 250, 258
cinereus, Crypturellus 75
Cinnyris jugularis 338, 339, 342
Cinnyris solarius 343
Circus hudsonius 323
Circus maculatus 327
cirris, Passerina 327
cirrocephalus, Chroicocephalus 168
Cissopis leverianus 259
Cistothorus palustris 325
Citriniventris, Attila 250, 258
Clytoctantes aliiii 235
Clytoctantes atrogularis 289, 292, 295, 300
Cnemotriccus fuscatus 286, 289, 293, 297, 298, 301
Cnemotriccus fuscatus duidae 293
Coccyzus americanus 323
Coccyzus erythropthalmus 323
Coccyzus minor 159
cocoi, Ardea 290
Coereba flaveola 259
coreulescens, Saltator 259, 294
Colaptes auratus 324
Colaptes punctigula 291
Colinus nigrogrisius 156
Colinus virginianus 155, 156, 322, 370, 371
collaris, Aythyia 152, 322
collaris, Microbates 259
Collocalia 55
Collocalia affinis 58
Colluricincla megahybrida 342
colubris, Archilochus 324
Columba alba 28, 29
Columba livia 323
Columba risoria 12, 16, 17, 21, 29
Columba roseogrisea 21
columbarius, Falco 324
columbiana, Nuclifraga 325, 330
Columbina inca 323
Columbina minuta 157
Columbina passerina 290, 300, 323
Columbina squamata 232, 236
Columbina tahirica 255, 290, 300
concolor, Amaurolimnas 166
concolor, Amauropiptha 206, 207
concretus, Actenoides 58
Conopophaga melanops 242
Conspicillatus, Forpus 234
constantii, Heliomaster 164
Contopus cooperi 324
Contopus sordidulus 184, 258, 324, 330
Contopus virens 258, 324, 329
cooperi, Contopus 324
cooperi, Megascops 176
cooperi, Megascops 176
Copsychus malabaricus 48, 53, 54, 59
Copsychus saularis 48, 53, 55, 59
coquerelii, Coua 276
Coracina fortisii 339
Coracina leucopygia 338
Coracina newtoni 343
Coracina papuensis 340, 341
Coracina personata 343
Coracina typica 127
Coragyps atatus 256, 290, 322
corax, Corvus 188, 325
coraya, Pheugopedius 259
cordofanius, Fasser 260
coronata, Lepidotheris 258
coronata, Setophaga 150, 326, 332
coronta, Setophaga 203
Corvus brachyrhynchos 325
Corvus corax 188, 325
Corvus enca 338, 39
Corvus validus 340
Corvus violaceus 340
coturnix, Coturnix 372

Scientific Names Index 397 Bull. B.O.C. 2015 135(1)
<table>
<thead>
<tr>
<th>Scientific Names Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coturnix coturnix 372</td>
</tr>
<tr>
<td>Coturnix japonica 370, 372</td>
</tr>
<tr>
<td>Coua coquereli 276</td>
</tr>
<tr>
<td>Coua ruficeps 242</td>
</tr>
<tr>
<td>couchii, Tyrannus 209, 210, 325</td>
</tr>
<tr>
<td>Cracticus 346–348, 353–355, 357</td>
</tr>
<tr>
<td>Cracticus argenteus 350, 351</td>
</tr>
<tr>
<td>Cracticus cassicus 342, 349, 350, 352, 353, 356, 357</td>
</tr>
<tr>
<td>Cracticus louisiadensis 348, 349, 353, 356</td>
</tr>
<tr>
<td>Cracticus mentalis 349, 350, 351, 357</td>
</tr>
<tr>
<td>Cracticus nigrogularis 349–351, 352, 353, 356, 357</td>
</tr>
<tr>
<td>Cracticus tibicen 354</td>
</tr>
<tr>
<td>Cranioleuca 93</td>
</tr>
<tr>
<td>Crateroscelis murina 341</td>
</tr>
<tr>
<td>creatopus, Ardenna 170</td>
</tr>
<tr>
<td>crecca, Anas 151, 322</td>
</tr>
<tr>
<td>crissale, Toxostoma 326</td>
</tr>
<tr>
<td>crissalis, Oreothlypis 326, 332</td>
</tr>
<tr>
<td>cristata, Elaenia 286, 289, 293, 301</td>
</tr>
<tr>
<td>cristatus, Tachyphonus 209, 210</td>
</tr>
<tr>
<td>Crotophaga ani 242, 256, 291</td>
</tr>
<tr>
<td>Crotophaga major 242</td>
</tr>
<tr>
<td>cruentatus, Melanerpes 242</td>
</tr>
<tr>
<td>cryptus, Cypseloides 162, 256</td>
</tr>
<tr>
<td>cucullata, Grallaricula 380</td>
</tr>
<tr>
<td>cucullatus, Icterus 201, 327</td>
</tr>
<tr>
<td>cucullatus, Phyllergates 49, 59, 62</td>
</tr>
<tr>
<td>Cuculus lepidus 58</td>
</tr>
<tr>
<td>Cuculus micropterus 58</td>
</tr>
<tr>
<td>Cuculus saturatus 343</td>
</tr>
<tr>
<td>Cyclarhis gujanensis 293</td>
</tr>
<tr>
<td>Cyclopsitta diophthalma 341</td>
</tr>
<tr>
<td>Cynanthus latirostris 324</td>
</tr>
<tr>
<td>Cyornis 46</td>
</tr>
<tr>
<td>Cyornis banyumas 48, 50, 52, 53, 55, 60, 65</td>
</tr>
<tr>
<td>Cyornis superbus 60</td>
</tr>
<tr>
<td>Cyornis unicolor 48</td>
</tr>
<tr>
<td>Cypsophila crassirostris, Tyrannus 211, 213</td>
</tr>
<tr>
<td>Crateroscelis murina 341</td>
</tr>
<tr>
<td>cryptus, Cypseloides 162, 256</td>
</tr>
<tr>
<td>Cyanerpes caeruleus 259</td>
</tr>
<tr>
<td>Cyanerpes cyaneus 258</td>
</tr>
<tr>
<td>Cyanerpes lucidus 209</td>
</tr>
<tr>
<td>Cyanocorax chrysops 286, 289, 294, 296, 297, 298</td>
</tr>
<tr>
<td>Cyanoptera, Brotogeris 257</td>
</tr>
<tr>
<td>Cyanoptera, Spatula 150, 322</td>
</tr>
<tr>
<td>Cyanoptera, Phaenicophaeus 57</td>
</tr>
<tr>
<td>Cyanoptera, Oryzomys 322</td>
</tr>
<tr>
<td>Cyanoptera, Brotogeris 257</td>
</tr>
<tr>
<td>Cyanoptera, Phaenicophaeus 57</td>
</tr>
<tr>
<td>Cyanoptera, Oryzomys 322</td>
</tr>
<tr>
<td>Cyanoptera, Brotogeris 257</td>
</tr>
<tr>
<td>Cyanoptera, Phaenicophaeus 57</td>
</tr>
<tr>
<td>Cyanoptera, Oryzomys 322</td>
</tr>
</tbody>
</table>
Scientific Names Index

Scientific Names Index

399

Bull. B.O.C. 2015 135(1)

Bull. B.O.C. 2015 135(1)

Scientific Names Index

Scientific Names Index

domicella, Lorius 339
dominicanus, Larus 104
dominica, Setophaga 321
dominicus, Nomonyx 152
dominicus, Tachybaptus 321, 322
Doricha enicura 164
dorsimaculatus, Herpsilochmus 9
dougallii, Sterna 101, 110, 111
dryas, Rhipidura 343
Dryobates scalaris 324, 332
Dryobates villosus 324, 332
Dryocopus lineatus 257, 291
Ducula aenea 339
Ducula badia 339
Ducula biocolor 339
Ducula lactuosa 339
Ducula myristicivora 342
Ducula perspicillata 339
Ducula pinon 342
Ducula radiata 338
Ducula rosea 343
Ducula rufigaster 342
Ducula zoee 342
dugandi, Herpsilochmus 6–10, 9
duidae, Cnemotriccus fuscatus 293
dumetoria, Ficedula 48, 60, 65
dumontii, Mino 342
duvaucelii, Psilopogon 58
Dysithamnus occidentalis 140
Eclectus roratus 339–341
Edolisoma melas 341
Edolisoma morio 338
Edolisoma tenuirostre 341, 343
eduardi, Tylas 275
Egretta thula 256, 290, 322
Egretta tricolor 321, 322
Elaenia 235
Elaenia chilensis 289, 293, 301
Elaenia cristata 286, 289, 293, 301
Elaenia frantzii 182
Elaenia parvirostris 8, 289, 293, 301
Elaenia spectabilis 289, 293, 301
Elanoides forficatus 321, 322
Elanus leucurus 175
elaphrus, Aerodramus 117, 124
elatus, Tyrannulus 258, 293, 301
elegans, Eudocimus 182
elegans, Thraupis 259
Eupetomena macroura 266
Euphagus cyanopeplus 211, 213, 328
Euphonia chrysopasta 294
Euphonia elegantissima 209
Euphonia minuta 194, 259
Euphonia rufiventris 259
Euphonia xanthogaster 259
Eurylaimus javanicus 58
Eurylaimus ochromalus 58
euryzona, Alcedo 58
euteles, Trichoglossus 342
everetti, Arachnothera 48, 49, 54, 60, 66
everetti, Yuhina 49, 59, 63
everetti, Zosterops 59, 60, 63
exulans, Anacardium 233
exilis, Ixobrychus 322
exilis, Laterallus 165, 256
eximius, Psilopogon 49, 58, 60, 61
externa, Pterodroma 169
falacinus, Plegadis 174, 272
Falco columbarius 324
Falco femoralis 181, 324, 329
Falco mexicanus 324
Falco moluccensis 340
Falco peregrinus 181, 310, 324
Falco punctatus 127
Falco rufigularis 257, 292
Falco sparverius 324
farinosa, Amazona 292
fasciata, Atticora 259
fasciata, Patagioenas 210, 323
fasciatus, Accipiter 343
fasciolata, Locustella 340
ferox, Myiarchus 258, 293, 301
ferruginea, Calidris 310
ferrugineipectus, Grallaricula 378
ferrugineus, Pseudorectes 342
festiva, Amazona 257
Ficedula dumetoria 48, 60, 65
Ficedula westermanni 49, 60, 65
fimbriata, Amazilia 256
flammeolus, Psiloscops 176, 324, 332
flammeus, Asio 213, 324
flavala, Hemixos 48, 59, 62
flava, Piranga 204, 327
flaveola, Coereba 259
flavescens, Celeus 43
flavescens, Hypochnemis 244–259, 251, 252, 257
flaviceps, Auriparus 325
flavicollis, Hemithraupis 294
flaviceps, Arachnothera 60
flavigaster, Arachnothera 60
flavicollis, Ixobrychus 340
flavigula, Piculus 257
flavicollis, Icteridae 325
flavigula, Piculus 257
flaviceps, Elanoides 321, 322
forficatus, Tyrannus 325
Formicivora grisea 286, 289, 292, 295, 300
Formicivora paludicola 133
formicivorus, Melanerpes 324
Forpus conspicillatus 234
Forpus passerinus 234
Forpus xanthopterygius 257
forsteri, Sterna 169, 323
fortis, Coracina 339
Foudia rubra 127
francica, Hirundo 119
francicus, Aerodramus 117–130, 121–126
francicus saffordi subsp. nov., Aerodramus 122
frantzii, Elaenia 182
Fregata minor 325
fusca, Petrochelidon 189, 325
fulva, Petrochelidon 189, 325
fulvais, Aerodramus 122
fulvus, Mulleripicus 338
furfurata, Thalurania 8, 256, 269
furfurata, Tyto 291
fuscatus, Thalurania 266
Furnarius 93
Furnarius leucopus 292
fusca, Melozone 327, 35
fuscans, Lonchura 60
fuscatus, Chemotropicus 286, 289, 293, 297, 298, 301
fuscatus, Onychoprinorion 101, 109, 114
fuscescens, Catharus 79–92, 85
fuscescens, Turdus 79, 87, 89, 90
fuscicollis, Philemon 340
fusciceps, Thripophaga 98
fuscus, Larus 104, 105, 107, 166, 314
gaimardii, Myiopagis 7
galatea, Tanyiopagis 339, 340
Galbula dea 257
Galbula tombacea 7
galeata, Myiagra 340
galericulatus, Platylophus 59
galeritus, Anorrhinus 58
galulus, Loriculus 58
gallinaceae, Irediparra 338
Gallinago delicata 323
Gallinago stenura 343
gallopavo, Meleagris 322
gallus, Gallus 42, 43
Gallus gallus 42, 43
Gampsonyx swainsonii 245, 256
Garritornis isidorei 341
garrulus, Lorus 340
gaudichaud, Daceo 341
Gelochelidon nilotica 101, 106
genibarbis, Pheugopedius 294, 301
gentilis, Accipiter 323, 328
Geococcyx californianus 323
goffroyi, Geoffroyus 339–342
Geoffroyus goffroyi 339–342
Geopelia maugeus 343
georgiana, Melospiza 327
Geothlypis olmii 326
Gelothlypis trichas 326
Gretrypum montana 290, 300
Geranoaetus albicaudatus 233, 236, 323, 328
Gerygone sulphurea 58
gibberifrons, Anas 338, 343
gilvus, Vireo 325
glabrirostris, Melanotris 340
grovus, Vireo 325
glabrirostris, Melanotris 340
gilvus, Vireo 325
Gilvus, Vireo 325
Glaucidium brodiei 58
Glaucidium gnoma 176, 324
Glaucidium parkeri 6
Glaucospis, Thalararina 266, 267
Glypophrynchus spirurus 258, 292, 300
gnomus, Glaucidium 176, 324
golavi, Pycnonotus 59
goldmani, Setophaga 150, 203
goliath, Zetophasa 340
gracias, Setophaga 204
gracilipes, Zimmerius 258
Gracula religiosa 60
graculina, Strepera 352, 353, 354
graduada, Icterus 233, 332
Graallaria varia 252
Grallaricula 378, 380
Grallaricula cucullata 380
Grallaricula cumanensis 380
Grallaricula ferrugineiceps 378
Grallaricula flavirostris 378
Grallaricula lineifrons 378
Grallaricula loricata 378–382, 379
Grallaricula nana 140–142, 141
Grallaricula ochraceifrons 378
Grallaricula peruviana 379
gramineus, Pooecetes 327, 328
grammacus, Chondestes 199, 327
grammicus, Celeus 257
granadensis, Myiozetetes 353
Granatellus pelzelni 6, 252
Granatellus venustus 206
grandidieri, Zoonavena 117
granti, Sula 172
Graydidascalus brachyurus 256
grisea, Formicivora 286, 289, 292, 295, 300
griseicauda, Treron 338, 339
griseiceps, Pachycephala 341
griseisticta, Muscicapa 340
griseiventris, Bonasa 373
Griseotyrannus aurantioatrocristatus 289, 293
griseus, Nyctibius 256
griseus, Vireo 187
grossus, Saltator 259
gryseiventris, Tetrastes 372, 374
guatemalae, Megascops 176
guira, Guira 43, 242
Guira guira 43, 242
gujanensis, Cyclarhis 375
gujanensis, Odontophorus 255
gularis, Mixornis 50
gularis, Paroaria 294
gularis, Vauriella 49, 60, 65
guttata, Ortalis 255, 290
guttata, Taeniopygia 343
guttatoides, Xiphorhynchus 292
guttatus, Catharus 79, 82, 83, 89, 326
guttatus, Tinamus 255
guttatus, Xiphorhynchus 7, 258
gutturalis, Saxicola 343
gutturata, Cranioleuca 7, 8
Gygis alba 168
Gymnocichla nudiceps 211, 213
Gymnorhina 346, 347, 348, 354, 355, 357
Gymnorhina tibicen 346, 348, 349–354, 356, 357
Gymnorhinus cyanoccephalus 30–40, 36
gyrola, Tangara 259
haematodus, Trichoglossus 339, 341
Haemorhous cassinus 328
Haemorhous mexicanus 194, 328
haferi, Cyanocorax 298
Haliaeetus leucocephalus 323
hallaeus, Pandion 322
Haliastur indus 340
hammondii, Empidonax 325
Haplospiza rustica 208
Harpactes diardi 58
Harpactes oreskios 58
Harpactes whiteheadi 52
Harpagus bidentatus 175
Harpia harpyja 175
harpyja, Harpia 175
heermani, Larus 210, 213
Heliomaster constanti 164
Heliomaster longirostris 164, 232
heliosylus, Zonerodius 342
hemileucurus, Campylopterus 209, 210
hemimelaena, Scaphiphax 292, 300
Hemiprocne longipennis 338
Hemiprocne mystacea 339
Hemipus picatus 58
Hemithraupis flavicollis 294
Hemixus flava 48, 59, 62
Hemixus sumatranus 135–139, 137
Henicophas albilfrons 337, 342
Henicorhina leucosticta 259
herodias, Ardea 322
Herpetotheres cachinnans 292
Herpsilochmus dorsimaculatus 9
Herpsilochmus duginnans 6–10, 7, 9, 257
Herpsilochmus rufimarginatus 235
Heterocercus aurantiivertex 252, 253
himantopus, Himantopus 343
Himantopus himantopus 343
Himantopus mexicanus 323
Hirundo borbonica 119
Hirundo francica 119
Hirundo rustica 259, 325
hirundo, Sterna 109, 110, 111
Hirundo tahitica 59
hodgsoni, Anthus 384
homochroa, Oceanodroma 212
hottentottus, Dicrurus 338
hudsonius, Circus 323
huttoni, Vireo 325
hyacinthinus, Cyornis 343
Hydrornis schwanerii 58
hyemalis, Junco 327
Hylocharis eliciae 209
Hylocharis leucotis 324
Hylocichla mustelina 79, 82
Hylomanes momotula 178
Hylopezus 380
hyogastrus, Ptilinopus 341
hyperrhynchus, Notarchus 209
Hypocnemis cantator 248, 249
Hypocnemis flavescens 244–259, 251
Hypocnemis hypoxantha 257
Hypocnemis ochrogyna 299, 300
Hypocnemis peruviana 248, 251, 252
Hypocnemoides melanopogon 257
hypogrammicum, Arachnothera 49, 60, 66
hypoheleuca, Poecilodryas 341
hypoheleucos, Actitis 342
Hypotaenidia philippensis 338
Hypothymis azurea 59
Hypothymis puella 338
Hypothymis pyrrhoptera 257
hyoxantha, Hypocnemis 257
hyoxantha, Pachycephala 49, 50, 58, 61
hyoxantha, Pachyptila 258
Hypsipetes borbonicus 127
Hypsipetes malaccensis 135, 136
Hypsipetes olivaceus 127
iagoensis, Passer 260
Ianthocincla mitrata 65
Ianthocincla treacheri 48, 52, 59, 65
ibis, Bubulcus 256, 290, 322
Ibycter americanus 211, 213, 257, 292
Icteria virens 327
Icterus bullockiorum 327
Icterus cayanensis 294
Icterus chrysater 201, 202
Icterus cucullatus 201, 327
Icterus graduacauda 328, 332
Icterus maculialatus 200, 201
Icterus parisorum 328
Icterus pustulatus 202
Icterus spurius 327
Ictinia mississippiensis 323
Ictinia plumbea 256
idae, Ardeola 276
ignobilis, Turdus 259, 294, 301
iliaca, Passerella 327
immunda, Rhytipterna 286, 289, 293, 296, 297, 301
imperialis, Campephilus 321
inca, Columba 323
ind, Chloroceryle 291
indica, Chalcophaps 57
Indicus 12
indicus, Turtur 12
Indicus, Turtur 11, 13, 14, 21
indigo, Eumyias 49, 60, 65
indus, Haliastur 340
infuscatus, Automolus 258
inornatus, Philemon 343
inquisitor, Tityra 258
inscriptus, Pteroglossus 257, 291
insularis, Passer 260
Iodopleura isabellae 293
Irediparra gallinacea 338
Iridoparara gallinacea 338
Irena puella 59
iris, Psitteuteles 342
isabellae, Iodopleura 293
isidorei, Garritornis 341
isura, Rhipidura 341
Ixobrychus exilis 322
Ixobrychus flavicollis 340
Ixos malaccensis 59
Ixos sumatranus 136
Ixos virens 135
Jacamperos aureus 257
jacana, Jacana 256, 290
Jacana jacana 256, 290
jacarina, Volatinia 259, 294, 301
jacquacu, Penelope 255, 290
jamaicensis, Buteo 211, 323
jamaicensis, Laterallus 165, 211, 213
jamaicensis, Leptotila 158
jamaicensis, Leptotila 165, 211, 213
jamaicensis, Leptotila 158
jamaicensis, Oxyura 152, 322
japonica, Coturnix 370, 372
javanica, Rhipidura 48, 59, 61
javanicus, Eurylaimus 58
jefferyi, Chlamydochaera 60
jonguillaceus, Aprosmictus 342
jugularis, Cinnrys 339, 339, 342
julias, Arachnothera 52
Junco hyemalis 327
Junco phaeonotus 327, 332
kennicottii, Megascops 324
keraudreni, Phoenicoparrus 342
kienerii, Lophotriorchis 57
kinabaluensis, Chloropsis 48, 49, 54, 60, 65
Knipolegus poecilurus 140
Lacedo pulchella 58
Lalage atrovirens 341
Lalage aurea 40
Lampornis clemenciae 324, 332
Lampopsar tanagrinus 8
Laniocera rufescens 186, 187
Lanius ludovicianus 213, 325
Lanius schach 343
lapponicus, Calcarius 326, 331
laxipennis, Campylopterus 291, 300
Larus delawarensis 168, 323
Larus dominicanus 104
Larus fuscus 105, 107, 168, 314
Larus heermanni 210, 213
Laterallus exilis 316, 256
Laterallus salvadorii 165, 211, 213
Laterallus melanophysius 256, 290
Laterallus viridis 290
Lathrotriccus eulori 7
latirostris, Cynanthus 324
latirostris, Poecilotriccus 293, 301
lawrencii, Turdus 259
lazuli, Todiramphus 339
Legatus leucophaius 258, 293
lentiginosus, Botaurus 213, 322
Lepidothrix coronata 258
lepidus, Ceys 340
lepidus, Cuculus 38
Leptocoma aspasia 338-340, 342
Leptocoma brasiliana 60
Leptotithes cayennensis 232, 256
Leptosomus discolor 275
Leptotila jamaicensis 158
Leptotila verreauxi 290, 300, 323, 329
lepturus, Phaethon 213
leschenaulti, Enicurus 54, 60
leucocephala, Patagioenas 157
leucocephalus, Haliaeetus 323
leugaster, Sula 173
Leucophaeus aterricula 168, 323, 329
leucophaeus, Dicrurus 48, 59, 61
Leucophaeus pipixcan 323
leucophaius, Legatus 258, 293
leucophrys, Rhipidura 341
leucophrys, Vireo 209
leucophrys, Zonotrichia 327
leucophthalmus, Psittacara 257, 292
leucopus, Furnarius 292
leucopygys, Coracina 338
leucopygys, Philemon 343
leucopyrgus, Rhaphidura 58
leucoryn, Artamus 341
leucosticta, Henicorhina 259
leucotis, Hylocharis 324
leucotis, Stachyris 50, 51, 54, 59, 64
leucurus, Elanus 175
leverianus, Cisopsis 259
lherminieri, Puffinus 171, 211
Lichenostomus 354
limicola, Rallus 211, 213
Limnodromus scolopaceus 323
lincolnii, Melospiza 217
linearis, Chiroxiphia 209
lineata, Dacnis 294
lineatum, Tigrisoma 290
lineatus, Dryocopus 257, 291
lineifrons, Grallaria 372
Liosceles thoracicus 258
Lipaicus vociferans 258, 293
litaralis, Ochthornis 258
livia, Columba 323
Locustella fasciolata 378
lodoisiae, Synoicus 372
Lonchura africapilla 194
Lonchura fuscans 60
Lonchura malacca 193
longicauda, Bartramia 323
longicaudus, Stercorarius 212
longipennis, Hemiprocne 338
longipennis, Myrornis 257
longirostra, Arachnothera 49, 60, 65, 66
longirostre, Toxostoma 326
longirostris, Chalcophaps 343
longirostris, Heliomaster 164, 232
longirostris, Thapsinillas 338
Lophotriorchis kienerii 57
Lophozosterops 49
loricata, Grallaria 378–382, 379
loricatus, Symposiachrus 339
Loriculus galgulus 58
Loriculus sclateri 337, 338
Lorius domicella 339
Lorius garrulus 339
Lorius lory 341
Lorius lory 341
louisiadensis, Cracticus 348, 349, 353, 356
lucidus, Cyanerpes 208
lucifer, Calothorax 324
luctuosa, Ducula 339
lugubris, Surniculus 58
Lurocalis semitorquatus 160
luteola, Sicalis 208
lutescens, Anthus 383
Lycomys pyrrhopterus 340
Lyncornis temminckii 58
macao, Ara 292
macadamii, Stercorarius 167, 114
Machaeropera pyrocephalus 293, 300
Machaeropera striolatus 258
macklotii, Erythropitta 54
Macronus ptilosus 52
Macropygia amboinensis 339
Macropygia ruficeps 57
macrorhyncha, Pachycephala 340, 343
macroura, Eupetomena 266
macroura, Senegambia 159, 323
macrurus, Actitis 256, 323
maculatum, Todirostrum 258, 293
maculatus, Myiodynastes 293
maculatus, Pardirallus 166
maculatus, Pipilo 327
maculatus, Prionochilus 50, 52, 54, 60, 65
maculatulatus, Icterus 200, 201
magicus, Otus 340
magna, Sturnella 199, 327
magnifica, Megaloprepia 342
magnirostre, Malacopteron 50, 51, 54, 59, 64
magnirostris, Rupornis 43, 256, 290
magnolia, Setophaga 326
magna, Malacopteron 48
maillardi, Circus 127
major, Crotaphaga 242
major, Pachyramphus 209, 210
malabaricus, Copsychus 48, 53, 54, 59
malacca, Lonchura 193
malaccense, Pseudornis 48, 52
malaccensis, Hylasthernis 135, 136
malaccensis, Ixos 59
malacensis, Anthreptes 60
Malacopteron cinereum 48, 59, 64
Malacopteron magnirostre 50, 51, 54, 59, 64
Malacopteron magnus 48
malaris, Phaeothornis 256
Malurus cyanopeplus 341
manacus, Manacus 292, 300
Manacus manacus 292, 300
mandadensis, Symposiachrus 341
manadensis, Turacoma 338, 339
manilatus, Orthopsittaca 257, 292
Manucodia ater 342
Mareca americana 151, 322
Mareca strepera 151, 322
margaritatus, Megastictus 250, 257
Margarornis rubiginosus 93–100, 94–96
Margarornis squamiger 93, 98
marginatus, Microcerulus 299
marginatus, Pachyramphus 258
marila, Aythya 322
markhami, Oceanodroma 172
martinicus, Porphyrio 290
maugei, Dicaeum 343
maugeus, Geopelia 343
mauritianus, Zosterops 127
maxima, Melanocorypha 137
maxima, Pitta 337, 340
maxima, Thalasseus 108
maximus, Saltator 259, 294
mayeri, Nesoenas 127
Megacerculus minor 140
Megaceryle alcyon 324
Megaceryle torquata 291
Megaloprepia magnifica 342
megalarhynchos, Tanygnathus 339
megalorynchus, Tanygnathus 340
Megapodius freycinet 339
Megapodius reinwardt 342
megarhyncha, Colluricincla 342
megarhynchus, Melilestes 342
Megarynchus pitangua 293
Megascops asio 324
Megascops barbarus 176
Megascops chilota 256, 291
Megascops cooperi 176
Megascops guatemalae 176
Megascops kinnicotti 324
Megascops trichopsis 176
Megascops watsonii 256
Megastictus margaritatus 250, 257
Meiglyptes tristis 58
melambrotus, Cathartes 256, 290
melancholicus, Cathartes 256, 290
melancholicus, Tyrannus 233, 258, 293, 301
Melanerpes aurifrons 324
Melanerpes cruentatus 257, 291
Melanerpes formicivorus 324
Melanerpes pygmaeus 179
mela(nia), Oceanodroma 171
melenicocephalus, Pheucticus 327
melenicocephalus, Pionites 327
melenicocephalus, Pionites 257
melenocephalus, Pheucticus 327
melenocephalus, Pionites 257
melenocephalus, Pionites 291
melenogaster, Pica 242
melenoleuca, Tringa 323
melenuleuca, Tringa 323
melenuleus, Campephilus 257, 291
melenuleus, Seluscidus 335, 342
melenonotus, Thamnophilus 342
melenopogon, Hypocnemoides 257
melenops, Conopophaga 242
melenops, Polioptila 326
melenura, Pyrrhura 326
melenura, Pica 341
melenus, Edolisoma 341
melenus, Eulimnas 341
melagris gallopavo 322
Melilestes megarhynchus 342
Melospiza 355, 356
Melospiza lincolnii 327
Melospiza melodia 327
Melozone 257
Melozone biarcuata 197
Melozone fusca 35, 327
mengeli, Centropus 342
menbiki, Centropus 342
menetriesii, Myrmotherula 257
meniniting, Alcedo 257
menstruus, Pionus 257, 292
mentalis, Cracticus 349–351, 357
mentalis, Pachycephala 340
mentalis, Pica 35
merganser, Mergus 322
Mergus merganser 322
Mergus octosetaceus 131, 131–134
Merops ornat us 338
Merops philippinus 343
Merops viridis 58
merulinus, Cocamantis 48, 57, 60
Mesembrinibis cayennensis 256
mexicana, Sialia 326
mexicanus, Catherpes 325
mexicanus, Cinculus 192
mexicanus, Falco 324
mexicanus, Haemorrhous 194, 328
mexicanus, Himantopus 323
mexicanus, Momotus 178
mexicanus, Quiscalus 328
Micrastur mirandolli 257
Micrastur ruficollis 181
Micrastur semitorquatus 41–44, 42, 234
Micathene whitneyi 324
Microbates collaris 329
Microcourus marginatus 329
Microeca 356
micropterus, Cuculus 356
Microptilotis 356
Microptilotis analogus 342
Microptilotis reticulata 343
Microptilotis quixensis 343
Microptilotis subsericeus 292
Microptilotis weberi 392
microsoma, Oceanodroma 172
migratorius, Turdus 211, 213, 326
militaris, Sternum 294
Milvago chimachima 342
Minimus polyglottos 326
miilatus, Myioborus 327, 332
minimus, Catharus 79, 83, 84, 85, 91
minimus, Empidonax 324
minimus, Psaltriparus 325
minimus, Turdus 80
Mino anais 337, 342
Mino dumontii 342
minor, Aplo onyx 343
minor, Chordeiles 160, 245, 256, 324
minor, Cocco nus 196
minor, Fregata 172
minor, Megaceryle 140
minor, Pachyramphus 258
minor, Turdus 79, 80, 83, 89
minuta, Calidris 310
minuta, Columbina 157
minuta, Euphonia 194, 259
minutilia, Calidris 323
minutus, Nume nius 340
minutus, Xenops 258, 292, 300
Mionectes oleagineus 293, 301
mirandolli, Micrastur 257
mississippiensis, Ictinia 323
mitrata, Ianthocincla 65
Mixornis bornensis 49, 50, 59, 63
Mixornis gularis 50
Mniotilta varia 326
modesta, Arachnothera 60
modesta, Turacoena 343
modestus, Sublegatus 289, 293, 301
Molothrus aeneus 328
Molothrus ater 202, 328
Molothrus bonariensis 202
Molothrus oryzivorus 259
moluccensis, Cacatua 339
moluccensis, Dendrocopos 339
moluccensis, Falco 340
momota, Momotus 326
momotula, Hylomanes 178
Momotus mexicanus 178
Momotus momota 256
monacha, Ptilinopus 341
monachus, Artamus 338
Monarcha 354
Monarcha cinerascens 338
Monasa morpheus 257
Monasa nigrifrons 291, 8
monetoura, Claravis 158
montana, Brachypteryx 60
montana, Geotrygon 290, 300
montana, Perdix 360, 361, 370, 371
montanus, Oreoscoptes 326
montanus, Pomatorhinus 59
montezumae, Cyrtonyx 322, 332
monticola, Psilopogon 58
monticolum, Dicaeum 60
montis, Seicercus 48, 59, 62, 63
montivagus, Aeronautes 232
morio, Edolisoma 338
Morococcyx erythropygus 160
morpheus, Monasa 257
Motacilla cinerea 343
motacilla, Parkesia 326
Mulleripicus fulvus 338
murina, Crateroscelis 341
murina, Phaeomyias 293, 301
murinus, Thamnophilus 257
Musicipa griseisticta 340
musculus, Troglodytes 294
mustelina, Hylocichla 79, 82
mustelinus, Turdus 79–92, 86, 88, 90
Myadestes townsendi 326
Myiagra alecto 340
Myiagra galeata 340
Myiarchus 235, 296
Myiarchus cinerascens 325, 330
Myiarchus ferox 258, 293, 301
Myiarchus nuttingi 186
Myiarchus tuberculifer 325, 330
Myioborus miniatus 327, 332
Myioborus pictus 327, 332
Myiodynastes maculatus 293
Myiopagis caniceps 258
Myiopagis flavivertex 6–10, 7, 8
Myiopagis viridicata 293
Myiozetetes cayanensis 293
Myiozetetes granadensis 258
Myiozetetes similis 258, 293
myotherinus, Myrmoborus 257
myristicivora, Ducula 342
Myrmeciza 355
Myrmelastes schistaceus 257
Myrmoborus myotherinus 257
Myrmoderus ruficauda 242
Myrmophylax atrothorax 292
Myrmoderus campanisona 258
Myrmotherula ambigua 252
Myrmotherula axillaris 8, 257
Myrmotherula brachyura 257
Myrmotherula longipennis 257
Myrmotherula menetriesii 257
mysolensis, Aplonis 338–342
mystacea, Hemiproco 339
mystacophanos, Psilopogon 58
mysticalis, Thapsinillas 339
Myzomela eques 342
nana, Grallaricula 140–142, 141
Napothera epilepidota 50, 52, 55, 59, 64
nativitatis, Puffinus 170
nattereri, Seleniidea 252
nebouxii, Sula 172
neglecta, Pterodroma 169, 170
neglecta, Sturnella 327, 36
Neopipo cinnamomea 250, 258
Nesoenas mayeri 127
newtoni, Coracina 127
nier, Chlidonias 101–116, 113
nier, Cypseloides 161, 162, 256
nier, Rynchops 169
nigra, Melanocharis 342
nigra, Penelopina 152
nigrescens, Nyctidromus 291, 300
nigrescens, Setophaga 213, 326
nigricans, Petrochelidon 343
nigricans, Sayornis 325
nigriceps, Stachyris 48, 50, 51–53, 59, 63
nigricholis, Podiceps 322
nigricholis, Sporophila 289, 294, 302
nigrifrons, Monasa 291, 8
nigrifrons, Pomatorhinus 59
nigromaculata, Phlegopsis 258
nilotica, Gelochelidon 101, 106
Nisaetus albuniger 57
nitens, Phainopepla 326
nitidus, Buteo 232, 290
Nonomyx dominicus 152
Notharctus hyperoxynchus 209
Nothocrax urutumum 253
novaeguineae, Pitta 341
novaeguineae, Toxorhamphus 342
nuchalis, Sphyrapicus 180, 213, 324
Nucifraga columbiana 325, 330
nudiceps, Gymnocichla 211, 213
Numenius americanus 323
Numenius borealis 213
Numenius minutus 340
Numenius phaeopis 314
nuttallii, Phalaenoptilus 324
nuttlingi, Myiarchus 186
Nyctanassa violacea 174, 322
Nyctibius griseus 256
Nyctitoxacra calendicus 341
nycticorax, Nycticorax 174, 322
Nycticorax nycticorax 174, 322
Nyctidromus albicollis 291, 324, 329
Nyctidromus nigrescens 291, 300
Nyctyornis alecto 58
oberholseri, Empidonax 325, 330
obsoletum, Camptostoma 293
obsoletus, Crypturellus 75, 76
obsoletus, Salpinctes 189, 190, 325
occidentalis, Catharus 326, 330, 331
occidentalis, Dysithamnus 140
occidentalis, Empidonax 325, 332
occipitalis, Chlorophonia 209
Oceanodroma castro 171
Oceanodroma homochroa 212
Oceanodroma markhami 172
Oceanodroma melania 171
Oceanodroma microsoma 172
Oceanodroma tethys 171
ocellatus, Cyrtomyx 156
ochraceifrons, Grallaricula 378
ochraceus, Alopoxyx 49, 50, 51, 55, 59, 62
ochrocephala, Amazona 292
ochrocephala, Hypocnemis 292, 299, 300
ochrolaemus, Automolus 258
ochromalus, Eurylaimus 58
Ochthornis littoralis 258
octosetaceus, Mergus 131, 131–134
Oculocincta squamifrons 49
Odontophorus gujanensis 255
olax, Treron 57
oleagineus, Mionectes 293, 301
olivacea, Piranga 327
olivaceus, Hypsipetes 127
olivaceus, Tiaris 208
olivaceus, Vireo 258, 325
olivaceus, Zosterops 127
olivaresi, Chlorostilbon 6
Onychoprion anaethetus 168
Onychoprion fuscatus 101, 109, 114
opisthomelas, Puffinus 171
Oreophasis derbianus 154, 155
Oreoscoptes montanus 326
Oreothlypis celata 326
Oreothlypis crissalis 326, 332
Oreothlypis ruficapilla 326
Oreothlypis virginiae 202, 326
oreskios, Harpactes 58
orientalis, Eudynamys 339
Oriolus bouroensis 339
Oriolus chinensis 338
Oriolus flavocinctus 341
Oriolus phaeochroma 340
ornatus, Calcarius 326
ornatus, Cephalopterus 258
ornatus, Merops 338
ornatus, Trichoglossus 338
orheus, Pachycephala 343
Ortalis guttata 255, 290
Ortalis squamata 42, 43
Ortalis vetula 152
Orthopsittaca manilatus 257, 292
Orthotomus atrogularis 59
Orthotomus ruficeps 59
Orthotomus sericeus 48, 59, 63
oryzivorus, Molothrus 259
otus, Asio 324
Otus magicus 340
Otus spilocephalus 58
Oxyura jamaicensis 152, 322
Pachycephala griseiceps 341
Pachycephala hypoxantha 49, 50, 58, 61
Pachycephala macrorhyncha 340, 343
Pachycephala mentalis 340
Pachycephala orheus 343
Pachycephala pectoralis 338, 339
Pachyramphus major 209, 210
Pachyramphus marginatus 258
Pachyramphus minor 258
Pachyrylaria hypoxantha 258
pacificus, Ardea 170
palida, Spizella 198, 327
palmarum, Setophaga 203, 326
palmarum, Tangara 294
palmarum, Thraupis 259
palpebrosus, Zosterops 59, 63
paludicola, Formicivora 133
palustris, Cistothorus 325
Pandion haliaetus 322
Panyptila cayennensis 232, 291
Panyptila sanctithomae 162, 163
papuensis, Coracina 340, 341
Pardirallus maculatus 166
parellina, Formicivora 133
pacificus, Stercorarius 110, 111, 112
parisorum, Icterus 328
parkinsoni, Procellaria 170
Paroaria gularis 294
Paroaria nigrofusca 236
parvirostris, Crypturellus 75, 76
parvirostris, Elaenia 8, 289, 293, 301
Passer cordofanicus 260
Passer domesticus 194, 328
Passer iagoensis 260
Passer insularis 260
Passer rufocinctus 260–264
Passer shelleyi 260–264, 261, 262
Passerculus sandwichensis 199, 327
Passerella iliaca 327
Passerina amoenas 327
Passerina caerulea 327
Passerina ciris 327
passerina, Columbina 290, 300, 323
Passerina cyanea 327
passerina, Spizella 198, 327
Passerina versicolor 207, 327, 332
passerinus, Forpus 234
passerinus, Veniliornis 257
Patagioenas cayennensis 255
Patagioenas fasciata 210, 323
Patagioenas leucocephala 157
Patagioenas plumbea 255
Patagioenas speciosa 290
pavoninus, Pharomachrus 256
pectoralis, Pachycephala 338, 339
pelagicus, Chaetura 162
Pelargopsis melanorhyncha 338
Pelecanus erythrorhynchos 273, 322
Pellorneum capistratum 50, 51, 59, 64
Pellorneum malacens 48, 52
Pellorneum pyrrogenys 48, 52, 55, 59, 64
Peltops 349, 351, 353
Peltops spp. 346
pelzelni, Granatellus 6, 252
Penelope jacquacu 255, 290
Penelope nigra 152
Percnostola rufifrons 244–259, 249, 250, 251, 252, 257
Perdix atrorufa 361, 362–364, 367, 370
Perdix Afrotura 360
Perdix montana 360, 361, 370, 371
perdix, Perdix 360, 361, 371
Perdix perdix 360, 361, 371
Scientific Names Index

B. O. C. 2015 135(1)

peregrinus, Falco 181, 310, 324
Pericrocotus solaris 49, 58, 61
perlata, Rhipidura 48, 59, 61
Pernis apivorus 386, 387
Pernis ptilorhynchus 386–388, 387
personata, Coracina 343
perspicillata, Ducula 339
peruviana, Grallaria 379
peruviana, Hypocnemis 248, 251, 252
petechia, Setophaga 326
Petrochelidon fulva 189, 325
Petrochelidon nigricans 343
Petrochelidon pyrrhonota 325
Peucaea botterii 211
Peucaea cassinii 327
Peucaea ruficauda 198
Peucedramus taeniatus 326, 332
Phacellodomus rufifrons 98
Phaenicophaeus curvirostris 57
phaeocephalus, Alophoixus 48
phaeochromus, Oriolus 340
Phaeomyias murina 293, 301
phaeonotus, Junco 327, 332
phaeopus, Numenius 314
phaeopygia, Pterodroma 256
Phaethon aethereus 169
Phaethornis atrimentalis 256
Phaethornis bourcieri 256
Phaethornis philippii 327
Phaethornis philippinus 328
Philydor 93
Philydor erythrocercum 292, 300
Philydor erythropterus 258
Phlegopsis nigromaculata 258
phoebe, Sayornis 325
phoebus, Tachyphonus 286, 289, 294, 298, 299, 301
phoenicurus, Amaurornis 338
Phongammus keraudrenii 342
Phyllostomus hastatus 340
Phylloscopus borealis 340
Phylloscopus trivirgatus 48, 59, 62
Piaya cayana 43, 238–243, 239–241, 256, 291
Piaya melanogaster 242
picatus, Hemipus 58
Picoides scalaris 180
pictus, Myioborus 327, 332
Piculus flavigula 257
Picumnus aurifrons 291, 300
picumnus, Dendrocolaptes 182
picus, Dendroplex 258, 292
Picus mentalis 58
Picos miniacus 58
Picos puniceus 58
pinnatus, Botaurus 173
pinon, Ducula 342
pinus, Spinus 195, 328
Pionites melanocephalus 257
Pionus menstruus 257, 292
Pipilo chlorurus 327
Pipilo maculatus 327
pipixcan, Leucophaeus 323
Piprites chloris 258
Piranga bidentata 327, 332
Piranga flav a 204, 327
Piranga ludoviciana 327
Piranga olivacea 327
Piranga rubra 327
pitangua, Megarynchus 293
Pitangus sulphuratus 258, 293
pitayumi, Setophaga 202, 203
Pitohui cerviniventris 342
Pitohui uropygialis 342
Pitta maxima 337, 340
Pitta novaeguineae 341
placens, Charmosyna 340
plagiaetus, Buteo 323
plancus, Caracara 292
Platalea ajaja 175
platycercus, Selasphorus 164, 324, 332
Platylophus galericulatus 59
platyrhynchos, Anas 319, 322
Plagadis chihi 174, 272, 272–274, 322
Plagadis falcinellus 174, 272
pleurostictus, Thryophilus 191
plicatus, Rhyticeros 339
plumea, Ictinia 256
plumea, Patagioenas 255
plumeus, Vireo 325, 332
pluricinctus, Pteroglossus 257
Puuialis fulva 314, 343
Podiceps nigricollis 322
podiceps, Podilymbus 322
Podilymbus podiceps 322
Poecile spp. 332
poecilinotus, Willisornis 258, 292
Poecilodryas hypoleuca 341
Poecilotriccus latirostris 293, 301
Poecilotriccus senex 289, 293, 295, 296, 301
poecilurus, Knipolegus 140
poliocephalus, Tachyphonus 286, 289, 50, 2, 59, 63, 64
poliocephalus, Porphyrio 338
poliogaster, Accipiter 233
poliophalus, Batrachostomus 58
Polioptila albiloris 191
Phyllergates cucullatus 49, 59, 62
Scientific Names Index

Polioptila caerulea 191, 326
Polioptila melanura 326
polyglottos, Mimus 326
polygrammus, Xanthonitis 342
Polytmus theresiae 246, 250, 256, 286, 289, 291, 300
pomarinus, Stercorarius 167
Pomatorhinus montanus 59
Poecetes gramineus 213, 327
Porphyrio martinicus 167
Porphyrio poliocephalus 338
Forzana carolina 323
praeox, Thamnophilus 253
prasina, Erythura 48, 60
Premnoplex brunnescens 93, 98
pretiosa, Claravis 290
Prinia flaviventris 59
Prionochilus maculatus 50, 52, 54, 60, 65
Prionochilus xanthopygius 60
Procellaria parkinsoni 58
Progne chalybea 259, 294
Progne subis 189
Progne tapera 294
promeropirhynchus, Xiphocolaptes 182, 258
psaltria, Spinus 328
Psaltriparus minimus 325
Psarisomus dalhousiae 58
Psarocolius angustifrons 259
Psarocolius bifasciatus 294
Pseudocolaptes 93
Pseudorectes ferrugineus 342
Pseudoscops clamator 177
Puffinus auricularis 171
dunlin, Calidris 291
dunlin, Calidris 58
pulchellus, Pitilinopus 342
punctatus, Falco 127
punctigula, Colaptes 291
punicus, Picus 58
purpurata, Querula 258, 293
pusilla, Cardellina 193, 326
pusilla, Spizella 327
pustulatus, Icterus 202
Pycnonotus atriceps 59
Pycnonotus brunneus 59
Pycnonotus cyaniventris 48
Pycnonotus erythropthalmus 48, 52
Pycnonotus goiavier 59
Pycnonotus squamatus 59
Pygiptila stellaris 257, 292, 300
pygmaeus, Sitta 325
pygmaeus, Melanerpes 179
pyrrochroa, Philemon 48
Pyrrhula melanura 257
pyrrogenys, Pellorneum 48, 52, 55, 59, 64
Querula purpurata 258, 293
Quiscalus mexicanus 328
quixensis, Microhierax 292
quoyi, Melloria 346, 348, 349–354, 356, 357
Quoyorns 356
radiata, Ducula 338
radjah, Radjah 341
Radjah radjah 341
Rallus limicola 211, 213
ramonianus, Trogon 256
Rhamphastos tucanus 257, 291
Rhamphastos vitellinus 291
Rhamphocelus carbo 8, 259, 294, 301
Rhamphotrichon rufigastra 258
Recuvirostra americana 273, 323
Regulus calendula 192, 326
Regulus satrapa 192, 326
reinwardtii, Selenidera 252
reinwardtii, Reinwardtoena 342
reinwardtii, Megapodus 342
Reinwardtoena reinwardtii 342
religiosa, Gracula 60
reticulata, Eos 343
reticulata, Microptilotis 343
Rhaphidura leucopyrgia 58
Rhagmatorhina melanosticta 252, 258
Rhinoceros, Buceros 58
Rhipidura albicollis 48, 59, 62
Rhipidura assimilis 341
Rhipidura bourouensis 339
Rhipidura dryas 343
Rhipidura isura 341
Rhipidura javanica 48, 59, 61
Rhipidura leucophrys 341
Rhipidura nigritorquis 61
Rhipidura perlata 48, 59, 61
Rhipidura rufiventris 343
Rhyticeros plicatus 339
Rhyticeros undulatus 58
Rhytipherna immunda 286, 289, 293, 296, 297, 301
Rhytipherna simplex 258
ridgwayi, Aegolius 178
ridgwayi, Antrostomus 161
rikeri, Berlepschia 292
riparia, Riparia 325
risoria, Columba 12, 16, 17, 21, 29
risoria, Streptopelia 11–29, 18, 20
riotorius, Turtur 17, 19, 20, 29
Rollulus rouloul 57
roratus, Eclectus 339–341
rosacea, Ducula 186, 187
roseogrisea, Columba 21
roseogrisea, Streptopelia 11, 12, 17, 20, 178
rubricollis, Campephilus 257
rubriceps, Aimophila 327
rubriceps, Coua 242
rubriceps, Macropygia 57
rubriceps, Orthotomus 59
ruficollis, Micrastur 181
ruficollis, Stelgidopteryx 259, 294
rufifrons, Cyanoderma 48
rufifrons, Pernis 244–259, 249, 251
rufifrons, Phaeolodius 98
rufigaster, Ducula 342
rufigularis, Falco 257, 292
rufiguimarginatus, Herpsilochmus 235
rufiguiviridigen, Euphonia 259
rufiguiviridigen, Rhipidura 343
rufiguiviridigen, Arremon 196
rufiguiviridigen, Passer 260–264
rufus, Selasphorus 324
rupestris, Chordeiles 256
Rupornis magnirostris 256, 290, 43
rustica, Haploprocta 208
rustica, Hirundo 259, 325
ruticilla, Setophaga 326
rutilans, Synallaxis 292, 300
rutilla, Streptoprocne 161
Rynchops niger 169
sabini, Xema 101, 103, 167
Salpinctes obsoletus 189, 190, 325
Saltator atriceps 209
Saltator coerulescens 259, 294
Saltator grossus 259
Saltator maximus 259, 294
sanctitironi, Panyptila 162, 163
sanctus, Todiramphus 341
sandwichensis, Passerculus 199, 327
Sasia abnormis 48, 58, 61
sativa, Regulus 192, 326
saturatus, Cuculus 343
saurinus, Thamnomanes 292, 300
saukotis, Copsychus 48, 53, 55, 59
savana, Tyrannus 186, 289, 293
savannah, Ammodramus 199, 327
saxatalis, Aetornis 324
Saxicola caprata 343
Saxicola gutturalis 343
Saxicola tectes 127
saya, Sayornis 325
Sayornis nigricans 325
Sayornis phoebe 325
Sayornis saya 325
scalaris, Dryobates 324
picoides, Picoides 180
schach, Lanius 343
schistaceiceps, Dicaeum 340
schistaceus, Myrmelastes 257
schistaceus, Thamnophilus 292
Schistochlamys melanopis 294
schrankii, Tanga 259
schwenki, Hydrornis 58
Sciapodyax hemmeliana 292, 300
sclateri, Lorius 337, 338
Sclerurus 93
scolopaceus, Limnodromus 323
Seicercus montis 48, 59, 62, 63
Selasphorus calliope 324
Selasphorus platycercus 164, 324, 332
Selasphorus rufus 324
Selenidera nattereri 252
Selenidera reinwardtii 252
Selenidera sp. 257
Selericidae alba 337
Selericidae melanoleucus 335, 342
semifasciata, Tityra 293
Semiornis wallacei 337
Semiornis wallaci 335, 340
semipalmata, Tringa 323
semitorquatus, Lurocalis 160
semitorquatus, Micrastur 41–44, 42, 234
senegalensis, Streptopelia 11
senex, Poecilorhynchus 289, 293, 295, 296, 301
sericeus, Orthotomus 48, 59, 63
serripennis, Stelgidopteryx 325
serva, Cercomacroides 257
Setophaga americana 326
Setophaga auduboni 150
Setophaga caerulescens 326
Setophaga chrysoparia 326, 331
Setophaga coronata 150, 326, 332
Setophaga corone 203
Setophaga dominica 326
Scientific Names Index

Setophaga goldmani 150, 203
Setophaga gracile 204
Setophaga magnolia 326
Setophaga nigrescens 213, 326
Setophaga palmarum 203, 326
Setophaga petechia 326
Setophaga pitiayumi 202, 203
Setophaga ruticilla 326
Setophaga townsendi 193, 326
severus, Ara 257, 292
shelleyi, Passer 260–264, 261, 262
Sialia currucoides 326
Sialia mexicana 326
Sialia sialis 326
Sialia spp. 332
sialis, Sialia 326
Sicalis luteola 208
silens, Turdus 87
similis, Myioborus 258, 293
simplex, Phaethus 256
sinensis, Centropus 57
singalensis, Chalcoparia 60
sinuatus, Cardellinae 327
siparaja, Aethopyga 60
Sitta canadensis 325, 330
Sitta carolinensis 325
Sitta frontalis 59
Sitta pygmaea 325
sociabilis, Rostrhamus 175
solaris, Cinnyris 343
solaris, Pericrocotus 49, 58, 61
solitarius, Tringa 289, 290, 323
solitarius, Buteogallus 321, 323
solitarius, Turdus 83, 87, 89
solitarius, Vireo 325
soloensis, Accipiter 341
sonneratii, Cacomantis 60
sordidulus, Contopus 184, 258, 324, 330
sou, Crypturella 70, 72, 75, 76, 78
spadiceus, Attila 258
sparverius, Falco 324
Spatula eurypea 151, 322
Spatula cyanoptera 150, 322
Spatula discors 150, 322
speciosa, Ardeola 338
speciosa, Patagioenas 290
spectabilis, Celeus 6
spectabilis, Elaenia 289, 293, 301
Speirops 49
Sphecotheres viridis 343
Sphyrapicus nuchalis 180, 213, 324
Sphyrapicus thyroides 324
spilophalus, Otus 58
Spilornis cheela 57
Spinus atriceps 195
Spinus pinus 195, 328
Spinus psaltria 328
Spinus tristis 328
spirurus, Glyphorynchus 258, 292, 300
Spiza americana 327
Spizella atrogularis 327
Spizella brevirostris 327
Spizella pallida 198, 327
Spizella passerina 198, 327
Spizella pusilla 327
sponsa, Aix 322
Sporophila angolensis 259, 294, 302
Sporophila caeruleus 289, 294, 302
Sporophila castaneiventris 259
Sporophila nigrigola 289, 294, 302
spraguei, Anthus 384
spurii, Icterus 327
squamata, Callipepla 322
squamata, Eos 340
squamata, Ortalis 42, 43
squamata, Tachornis 256
squamatus, Pygiscis 59
squamifrons, Ooculus 294
squamiger, Margarornis 93, 98
squamata, Columbina 232, 236
Stachys leucotis 50, 51, 54, 59, 64
Stachyys nigriceps 48, 50, 51–53, 59, 63
Stachys poliocephala 50, 51, 59, 63, 64
Stelgidopteryx ruficollis 259, 294
Stelgidopteryx serripennis 325
stellaris, Pygistrutla 257, 292, 300
stelleri, Cyanocitta 325, 332
stenura, Gallinago 343
stephani, Chalcophaps 342
Stercorarius antarcticus 101, 114
Stercorarius longicaudus 212
Stercorarius maccormicki 167, 114
Stercorarius parasiticus 167
Stercorarius pomarinus 167
Sterna albinata 103
Sterna bergii 107
Sterna dougallii 101, 110, 111
Sterna forsteri 169, 323
Sterna hirundo 101, 109, 110, 112
Sterna paradisaea 110, 111, 112
Sterna sumatrana 101, 111
Sternula superciliaris 256
stictocephalus, Thamnophilus 286, 289, 292, 295, 296, 299, 300
stolidus, Anous 103
stolzmanni, Tyrannus 258
strenuus, Psittacula 181, 182
Strepera 349, 351, 353
Strepera gracilis 352, 353, 354
strepera, Mareca 151, 322
Strepera spp. 346
Strepera versicolor 352, 354
Streptopelia capicola 15, 22
Streptopelia chinesis 343
Streptopelia decaocto 12, 17, 157, 323
Streptopelia risoria 11–29, 18, 20
Streptopelia roseogrisea 11, 12, 17, 20, 23
Streptopelia senegalensis 11
Streptopelia vinacea 17, 18
Streptopocce nutila 161
Streptopocce sonarvis 161
striatus, Accipiter 150, 323
strigilatus, Ancistrops 258
strigilosus, Crypturella 290
striolatus, Machaeropera 258
Strix fulvescens 176, 177
Sturnella magna 199, 327
Sturnella militaris 294
Sturnella neglecta 327, 36
Sturnus vulgaris 326
stygius, Asio 177
subalaris, Puffinus 171, 211
subcorniculatus, Philemon 340
subis, Progne 189
Sublegatus arenarum 235
Sublegatus modestus 289, 293, 301
subtilis, Buteogallus 340
Sula dactylatra 172
Sula granti 172
Sula leucogaster 173
Sula nebulosa 173
Sula sula 173
Sulphuratus, Pitangus 258, 293
sulphurea, Cacatua 341, 343
sulphurea, Gerygone 58
sulphurea, Tyrannopsis 293
sumatrana, Sterna 101, 111
sumatranus, Bubo 58
sumatranus, Hemixus 135–139, 137
sumatranus, Ixos 136
superbus, Cyornis 60
superbus, Ptilinopus 340
superciliaris, Abroscopus 59
superciliaris, Sternula 256
superciliosa, Eumomota 178, 179
surinamus, Tachyphonus 259
Synallaxis 93
Synallaxis erythrothorax 182
Synallochroa 326, 332
Synoicus lodoisiae 372
Tachornis squamata 256
Tachybaptus dominicus 321, 322
Tachybaptus ruficolis 339
Tachycineta albiventer 259, 294
Tachycineta thalassina 325
Tachyphonus cristatus 259
Tachyphonus phoenicuus 286, 289, 294, 298, 299, 301
Tachyphonus surinamensis 259
taeniatus, Peucedramus 258, 293
tenioceros, Philemon 340
tangarinus, Lamprosparr 8
Tangara cabanisi 207
Tangara chilensis 259
Tangara episcopus 294, 301
Tangara gyrola 259
Tangara palmarum 294
Tangara schwarzi 259
Tanygnathus megalorhynchos 339
Tanygnathus megalorgnchos 340
Tanyisiptera galatea 339
tapera, Progne 294
tataupa, Crypturellus 75, 76
tectes, Saxicola 127
telecopthalmus, Arses 341
temminckii, Aethopyga 60
temminckii, Lyncornis 58
tenebra, Chelidoptera 257, 291
tenuirostre, Edolisoma 341, 343
tenuirostris, Alauda 137
tenuirostris, Anous 101, 102, 103
tenuirostris, Calidris 314
Terenotriccus erythrurus 258, 293, 301
Terpsiphone affinis 48
Terpsiphone bourbonnensis 127
Tersina viridis 294, 302
tethys, Oceanodroma 171
Tetrastes bonasia 372, 373, 374
Tetrastes gryzoutventris 372, 374
Thalasseus bengalensis 106–108
Thalasseus bergii 101, 107–109
Thalasseus elegans 169
Thalasseus maxima 108
thallassina, Tachycineta 325
thallassinus, Eumyias 60
Thalurania eripil 266, 267
Thalurania furcata 8, 256, 269
Thalurania furcatus 266
Thalurania glaucopis 266, 267
Thalurania watertonii 265–271, 266, 267
Thamnomanes ardesiacus 257
Thamnomanes caesius 257
Thamnomanes saturninus 292, 300
Thamnophilus aethiops 244–259, 247, 252, 257
Thamnophilus doliatus 257, 292
Thamnophilus melanolotus 234
Thamnophilus munirius 257
Thamnophilus nigrocinererus 8
Thamnophilus praecox 253
Thamnophilus schistaceus 292
Thamnophilus stictocephalus 286, 289, 292, 295, 299, 300
Thapsinillas affinis 339
Thapsinillas chloris 340
Thapsinillas longirostris 338
Thapsinillas mystalalis 339
theresiae, Polytmus 246, 250, 256, 286, 289, 291, 300
thoracicus, Liosceles 258
Thraupis episcopus 259
Thraupis palmarum 259
Thripadectes 93
Thriophaga fusciceps 98
Thryomanes bewickii 326
Thryophilus pleurostictus 191
Thryothorus ludovicianus 190, 326
thula, Egretta 256, 290, 322
thyroideus, Sphyrapicus 324
Tiaris olivaceus 208
tibicen, Cracticus 354
tibicen, Gymnorhina 346, 348, 349–352, 353, 354, 356, 357
tigrina, Setophaga 202
Tigrisoma lineatum 290
Tinamus guttatus 255
Tityra cayana 258
Tityra inquisitor 258
Tityra semifasciata 293
Todiramphus chloris 338, 341
Todiramphus diops 340
Todiramphus lazuli 339
Todiramphus sanctus 341
Todirostrum chrysocrotaphum 258
Todirostrum maculatum 258, 293
tolmii, Geothlypis 326
Tolmomyias flaviventris 326
Tolmomyias traylori 8
tombacea, Galbula 7
torotoro, Syma 341
torquatus, Cracticus 349–351, 353
townsendi, Myadestes 326
townsendi, Setophaga 193, 326
Toxorhamphus novaeguineae 342
Toxostoma curvirostre 326
Toxostoma longirostre 326
trailii, Empidonax 324
traylori, Tolmomyias 8
treacheri, Ianthocincla 48, 52, 59, 65
Treron aromaticus 337, 339
Treron griseicauda 338, 339
Treron olax 57
Treron vernans 338
trichas, Geothlypis 326
Trichoglossus euteles 342
Trichoglossus flavoviridis 337, 338
Trichoglossus haematodus 339, 341
Trichoglossus ornatus 338
trichopsis, Megascops 176
trichroa, Erythrura 341
tricolor, Egretta 321, 322
tricolor, Phalaropus 323
trigonostigma, Dicaeum 60
Tringa flavipes 323
Tringa melanoleuca 323
Tringa semipalmata 323
Tringa solitaria 289, 290, 323
tristis, Meiglyptes 58
tristis, Spinus 328
trivialis, Anthus 384
trivirgatus, Phylloscopus 48, 59, 62
trivirgatus, Symposiachrus 340, 343
trochileum, Dicaeum 55
Tyrannus verticalis 325
Tyto alba 324
Tyto furcata 291
tzacatl, Amazonia 236
ultramarina, Aphelocoma 333
uncinatus, Chondrohierax 127
validus, Corvus 340
valisineria, Aythya 151, 322
Vanellus chilensis 167, 256, 290
varia, Grallaria 252
varia, Mniotilta 326
variegatus, Crypturellus 70, 73, 75, 76, 78
variolosus, Cacomantis 57
varius, Empidonomus 289, 293
Vauriella gularis 49, 60, 65
Veniliornis affinis 257
Veniliornis passerinus 257
venustus, Granatellus 206
vernans, Treron 338
verreauxi, Leptotila 290, 300, 323, 329
russicolor, Cardellina 193
russicolor, Passerina 207, 327, 332
russicolor, Strepera 352, 354
verticalis, Tyranus 325
vetula, Oralis 152
vicinior, Vireo 325
vigil, Buceros 48, 53, 58
villosus, Dryobates 324, 332
vinacea, Streptopelia 17, 18
violacea, Nyctanassa 174, 322
Violaceus, Corvus 340
Violaceus, Cyanocorax 258
Virens, Contopus 258, 324, 329
Virens, Icteria 327
Vireo atricapilla 325, 330
Vireo bellii 325
Vireo chivi 289, 294
Vireo gilvus 325
Vireo griseus 187
Vireo huttoni 325
Vireo leucophrys 209
Vireo olivaceus 258, 325
Vireo plumbeus 325, 332
Vireo solitarius 325
Vireo vicinior 325
Vireolanius melitophrys 187
Virescens, Butorides 322
Virescens, Ixos 135
Virgata, Calidris 167
Virginiae, Oreothlypis 202, 326
Virginianus, Bubo 324
Virginianus, Colinus 155, 156, 322, 370, 371
Viridicata, Myiopagis 293
Viridifrons, Amazilia 165
Viridis, Calyptomena 58
Viridis, Laterallus 290
Viridis, Merops 58
Viridis, Ptilinopus 339
Viridissima, Aegithina 48
Viridis, Sphecotheres 343
Viridis, Tersina 294, 302
Viridis, Trogon 7, 256
Vitellinus, Ramphastos 291
Vociferans, Lipaugus 258, 293
Vociferans, Tyrannus 186, 325
Vociferus, Antrostomus 161, 211, 213
Vociferus, Charadrius 323
Volatinia jacarina 259, 294, 301
Vulgaris, Sturnus 326
Wallacei, Semioptera 337
Wallaci, Semioptera 335, 340
Watertonii, Thalurania 265–271, 266
Watertonii, Trochilus 265, 267
Watsonii, Megascops 256
Weddellii, Aratinga 292
Westermannii, Ficedula 49, 60, 65
Whiteheadi, Calyptomena 52
Whiteheadi, Harpactes 52
Whiteheadi, Urosphena 48, 49, 52, 59, 62
Whitneyi, Micrathene 324
Willisornis poecilinotus 258, 292
Wilsonii, Charadrius 167
Wilsonii, Turdus 87, 88
Wilsonii, Turdus 87
Wollweberi, Aphelocoma 325
Woodhouseii, Aphelocoma 321
Wrightii, Empidonax 325
Xanthocephalus, Xanthocephalus 327
Xanthocephalus xanthocephalus 327
Xanthogaster, Euphonia 259
Xantholora, Amazona 211
Xanthopterygius, Forpus 257
Xanthopygius, Prionochilus 60
Xanthotis flaviventer 342
Xanthotis polygrammus 342
Xema sabini 101, 103, 167
Xenopipo atronitens 286, 289, 293, 295, 299, 301
Xenopirostris damii 275
Xenops 93
Xenops minutus 258, 292, 300
Xenotriccus callizonus 183
Xiphocolaptes promeropirhynchus 182, 258
Xiphorhynchus elegans 292, 300
Xiphorhynchus guttatooides 292
Xiphorhynchus guttatus 7, 258
Yncas, Cyanocorax 187
Yuhina everetti 49, 59
Zanthereuca, Erpornis 59
Zenaida asiatica 159, 323, 329
Zenaida macroura 159, 323
Zimmerius chrysops 140
Zimmerius gracilipes 258
Zoeae, Ducula 342
Zonaris, Streptoprocne 161
Zonerodius heliosylus 342
Zonotrichia albicollis 327
Zonotrichia leucophrys 327
Zoonavena grandidieri 117
Zosterops 46, 49
Zosterops atricapilla 49, 60, 63
Zosterops borbonicus 127
Zosterops chloris 49, 50, 51, 52, 55, 59, 63
Zosterops chloronothos 127
Zosterops everetti 59, 60, 63
Zosterops mauritianus 127
Zosterops olivaceus 127
Zosterops palpebrosus 59, 63
CONTENTS

<table>
<thead>
<tr>
<th>Club Announcements</th>
<th>278</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHUPIL, H. & ARAUJO MONTEIRO-FILHO, E. L. History of the Scarlet Ibis Eudocimus ruber in south and south-east Brazil</td>
<td>281</td>
</tr>
<tr>
<td>GUILHERME, E., MARQUES, E. L. & SANTOS, G. S. Avifauna of a white-sand vegetation enclave in north-west Rondônia, Brazil: relevant records, body mass and morphometrics</td>
<td>286</td>
</tr>
<tr>
<td>ALLPORT, G. First records of Sharp-tailed Sandpiper Calidris acuminata for Mozambique and continental Africa, and additional records of Pectoral Sandpiper C. melanotos in Mozambique, with comments on identification and patterns of occurrence</td>
<td>307</td>
</tr>
<tr>
<td>MILLER, E. T., MCCORMACK, J. E., LEVANDOSKI, G. & MCKINNEY, B. R. Sixty years on: birds of the Sierra del Carmen, Coahuila, Mexico revisited</td>
<td>318</td>
</tr>
<tr>
<td>ROOKMAAKER, K. & VAN WYHE, J. A price list of birds collected by Alfred Russel Wallace inserted in The Ibis of 1863</td>
<td>335</td>
</tr>
<tr>
<td>CAKE, M., BLACK, A. & JOSEPH, L. The generic taxonomy of the Australian Magpie and Australo-Papuan butcherbirds is not all black-and-white</td>
<td>346</td>
</tr>
<tr>
<td>VAN GROUW, H., BESSON, L. & MELLIER, B. A black page in the French partridge’s history: the melanistic variety of Red-legged Partridge Alectoris rufa</td>
<td>360</td>
</tr>
<tr>
<td>MIRANDA T., J. E., LÓPEZ, K. & GREENEY, H. F. First description of the nest, eggs and nestlings of Scallop-breasted Antpitta Grallaricula loricata</td>
<td>378</td>
</tr>
<tr>
<td>MATÍAS, E. & EISERMANN, K. First record of Red-throated Pipit Anthus cervinus in Central America</td>
<td>383</td>
</tr>
<tr>
<td>ZANNETOS, S. P., ZEVGOLIS, Y. & AKRIOTIS, T. First record of Crested (or Crested-type) Honey Buzzard Pernis ptilorhynchus for Greece</td>
<td>386</td>
</tr>
<tr>
<td>Index for Volume 138 (2018)</td>
<td>389</td>
</tr>
</tbody>
</table>

EDITORIAL BOARD
Bruce M. Beehler, Murray Bruce, R. T. Chesser, Edward C. Dickinson, Françoise Dowsett-Lemaire, Steven M. S. Gregory, José Fernando Pacheco, Robert B. Payne, Pamela C. Rasmussen, Cees Roselaar, Thomas S. Schulenberg, Lars Svensson