FORTHCOMING MEETINGS

See also BOC website: http://www.boc-online.org

BOC MEETINGS are open to all, not just BOC members, and are free.

Evening meetings are in an upstairs room at The Barley Mow, 104 Horseferry Road, Westminster, London SW1P 2EE. The nearest Tube stations are Victoria and St James’s Park; and the 507 bus, which runs from Victoria to Waterloo, stops nearby. For maps, see http://www.markettaverns.co.uk/the_barley_mow.html or ask the Chairman for directions.

The cash bar opens at 6.00 pm and those who wish to eat after the meeting can place an order. **The talk will start at 6.30 pm and, with questions, will last c.1 hour.**

It would be very helpful if those intending to come can notify the Chairman no later than the day before the meeting.

Tuesday 15 March 2016—6.30 pm—Dr Robert Prŷs-Jones—‘The Soul of the Collection’: key developments in the documentation of the British Museum’s bird collection, 1753 to 1909

Abstract: In response to years of perceived mismanagement since its foundation in 1753, a Parliamentary Select Committee was set up in 1835 to investigate ‘the condition, management and affairs of the British Museum’. A central concern of the inquiry was the question of documentation of specimens in the museum’s possession and the communication of information concerning them to both the general public and interested specialists. Evidence presented suggested this had been flawed since the BM’s inception, and the committee recommended that design and implementation of an improved system be treated as a matter of urgency. This presentation will analyse the nature of the problems that had arisen and the steps subsequently taken to address them, which culminated in the production of the extraordinary 27-volume *Catalogue of birds in the British Museum*, 1874–98, applauded at the time as a production of exceptional importance and still a key resource in museum ornithology.

Biography: Robert Prŷs-Jones has been Collections Manager, Birds, and Head of the Bird Group at the Natural History Museum at Tring for more than 20 years, with particular interests in the evolutionary biogeography of Indian Ocean island landbirds and in collections-related projects aimed at enhancing the information associated with museum specimens.

Tuesday 24 May 2016—5.30 pm—Annual General Meeting, followed at 6.30 pm by Dr Pat Morris—Birds of the parlour, a peep into some aspects of Victorian taxidermy.

Tuesday 20 September 2016—6.30 pm—Dr John Burnside—The conservation and ecology of the over-exploited Asian Houbara Bustard.

The Chairman: Chris Storey, 22 Richmond Park Road, London SW14 8JT UK. Tel. +44 (0)208 8764728. E-mail: c.storey1@btinternet.com
The 981st meeting of the Club was held on Tuesday 22 September 2015 in the upstairs room at the Barley Mow, 104 Horseferry Road, Westminster, London SW1P 2EE. Thirteen members and five non-members were present. Members attending were: Miss H. Baker, Mr S. Chapman, Dr R. A. Cheke, Mr D. J. Fisher, Mr R. R. Langley, Mr R. W. Malin, Dr C. F. Mann, Mr M. Montier, Mr R. Pritchett, Dr R. P. Prŷs-Jones, Mr A. Simmons, Mr S. A. H. Statham and Mr C. W. R. Storey (Chairman).

Non-members attending were: Mr R. Borello, Mrs W. Borello, Mr W. Budd, Mrs M. Gauntlett, Mrs M. Montier and Dr Hazel Jackson (Speaker).

Dr Hazel Jackson, Durrell Institute of Conservation and Ecology at the Univ. of Kent, spoke on Molecular phylogeography and mechanisms of invasion success in Ring-necked Parakeets across Europe. Increasing human-mediated transport of species around the world has led to invasive species becoming one of the largest global conservation challenges of today. Studies in molecular ecology can help us to unravel how evolutionary processes are important for informing conservation and invasion biology by understanding genetic mechanisms that enable populations to grow and adapt in a changing world. Ring-necked Parakeets Psittacula krameri are one of the most widely introduced parrot species in the world, with breeding populations in more than 35 countries. Native to southern Asia and sub-Saharan Africa, they have been transported around the globe due to their popularity as pets, and these charismatic parakeets are now a staple feature of urban gardens and parks across Europe. To understand underlying evolutionary mechanisms that enable invasive Ring-necked Parakeets to be so successful, I conducted a genetic investigation on parakeets from across their native and invasive ranges.

Phylogenetic reconstructions of patterns of evolution suggest that Asian Ring-necked Parakeets diverged c.2.5 million years ago and are ancestral to those found in Africa. Invasive populations across Europe, and in the Indian Ocean, predominantly originate from Asia, with surprisingly few individuals from Africa involved. Evidence from genetic phylo-groups, trade data and drivers of population growth highlight how multiple introductions and patterns of climatic similarities between the native and invasive ranges are mechanisms for invasion success, permitting parakeets to avoid problems associated with a small founding population size, such as inbreeding or high juvenile mortality. These findings are important to inform future policy for managing invasive species, and have already been applied to conservation and invasion management by improving the ability of ecological niche models to predict areas suitable for future invasions of Ring-necked Parakeets.

EDITORIAL BOARD

The Hon. Editor is pleased to welcome a new member of the Bulletin Editorial Board. Bruce Beehler is an ornithologist, conservationist and naturalist. He is currently a Research Associate in the Division of Birds at the National Museum of Natural History, Smithsonian Institution, Washington DC. After conducting doctoral fieldwork in Papua New Guinea, Beehler worked for ten years at the Smithsonian, followed by stints at the Wildlife Conservation Society, US Department of State, Counterpart International, Conservation International, and the National Fish & Wildlife Foundation. Beehler is an elective Fellow of the American Ornithologists’ Union, and has served on the boards of RARE, the Livingston-Ripley Nature Conservancy, and American Bird Conservancy. He has published ten books and authored scores of technical and popular articles. Today, his field research is focused mainly on wildlife in the USA, but his museum research continues into the avifauna of the New Guinea region.

REFEREES

I am grateful to the following, who have reviewed manuscripts submitted to the Bulletin during the last year (those who refereed more than one manuscript are denoted by an asterisk in parentheses): Michael Andersen, J. I. Areta, John Atkins, Adrian Azpiroz, Andrew Black, Mark Brigham, Michael Brooke, R. Terry Chesser, Alice Cibois, Adrian Craig, Brian Cresswell, Pierre-André Crochet, Marco Aurelio Crozariol, Jack Dumbacher, Guy Dutson, James Eaton, Andrew Elliott, Errol Fuller, Gary R. Graves, Steven M. S. Gregory, Philip Hall, Steve N. G. Howell, Julian P. Hume, Matthieu Le Corre, Mary LeCroy, Alexander C. Lees (*),
Wayne Longmore (*), Clive F. Mann, Michael S. L. Mills, Jiri Milikovsky, Ulf Ottosson, David Parkin, Robert Payne (*), Alan Peterson, Peter Pyle, H. D. Pratt, Robert Pry's-Jones, Pamela C. Rasmussen, Bruce Robertson, Phil Round, Roger Safford, Richard Schodde, Elizabeth Schreiber, Jean-Claude Thibault, Colin Trainor, Andreanna Welch, David R. Wells, James Wiley and Iain Woxvold.—The Hon. Editor

REVIEW

Many birders will empathise with the Sound Approach’s conclusion that ‘Owls force us out of our comfort zone’. Personally speaking, I have on many occasions ignored an unknown nocturnal noise from a hammock on tropical expeditions when a similar diurnal vocalisation would have had me ‘all ears’. Owls are ‘hard’ and as a consequence even in the relative terra cognita of the Western Palearctic the night is still ripe for discovery. The Sound Approach’s latest offering, Undiscovered owls, is an intriguing tome led by Magnus Robb that focuses on vocal variation in Western Palearctic taxa. Understanding the extent of vocal variation (and how this relates to molecular differentiation) is likely to be key to arriving at a more representative species-level taxonomy for a group that often exhibits little morphological variation. This is not to mention frequent plumage polymorphism in owls, which we now know to be associated with elevated speciation rates (Hugall & Stuart-Fox 2012).

The book’s style is informal, in keeping with other titles in the series, and it is written accessibly for a non-academic audience. The nine Western Palearctic owl genera are each afforded individual chapters with the greater part of each species account given over to vocal analyses that include extensive treatment of age and sex variation. As with previous volumes in the series, the reader is directed towards the critical aspects of this vocal variation via annotated sonograms. The recordings are generally fantastic with few exceptions and transport the listener to exciting soundscapes in the corners of the Palearctic. However, I (and other commentators) do feel that CDs are becoming dated. I played them in my car (about the only CD player I own) and was disappointed to find that there were no announcements, so my journey was punctuated by an assortment of hisses and growls for which I had to periodically stop to refer to the book—an mp3 format would surely be more user-friendly? The book is a visual treat too, replete with brilliant images and sketches by the talented Håkan Delin, which capture behaviour and habitat equally well. A minor gripe is the absence of true ‘plates’, especially given that the book does feature some artwork by the field guide maestro Killian Mullarney, which would have been useful given the subtleties of differentiating several visually cryptic taxa.

I was impressed by some of the taxa treated of which I have no personal field experience, e.g. Cape Verde Barn Owl Tyto (alba) detorta, Arabian Eagle Owl Bubo (africanus) milesi and Maghreb Wood Owl Strix (aluco) mauritanica, whilst other taxa flagged as splits are relatively less phenotypically distinctive and in some cases existing molecular data do not strongly support the authors’ alpha taxonomy. That said, the authors are quick to admit that their taxonomy ‘does not follow any existing authority, nor does it pretend to be one’ However, there is a trade-off here, given the need for rigour it would have been nice if the novel taxonomic hypotheses had been supported with a little more academic rigour and incorporated the usual scientific protocols to assess the significance of the results. This would have perhaps been best achieved within a ‘dry’ scientific paper that could have preceded the book and its ‘birder friendly’ digest replete with all the personal anecdotes and tall tales that are another a hallmark of the series.

It would be a disservice to all involved not to dwell on the team’s fantastic discovery of a Strix owl in northern Oman. The Sound Approach Team initially described this taxon (using images and sound-recordings, without the benefit of a voucher specimen) as a new species ‘Omani Owl’ Strix omnensis (Robb et al. 2013). Specimen collection continues to be a polarising and prickly subject, but in this instance, as in some others (e.g. Nguembock et al. 2008, Peterson 2013), the description of a new species without a complete physical type meant that controversy wasn’t slow to follow. Kirwan et al. (2015) re-examined the 19th-century type of Hume’s Owl S. butleri and concluded it to be diagnosably different from all other specimens, necessitating the description of a new taxon—Desert Tawny Owl S. hadorami for everything but the type. This left ‘Omani Owl’ in taxonomic limbo, albeit with a prognosis by Kirwan et al. that it would prove synonymous with Hume’s type specimen. This hypothesis has now been confirmed within an as yet unpublished study by Robb et al. (2015), which neatly resolves what has proved to be a rediscovered owl.

Undoubtedly, we face significant taxonomic inflation of global owl lists and the genuine discovery of new species as molecular and vocal analysis toolkits take over. Recent validation of species status for Cyprus Scops Owl Otus (scops) cyprius by Flint et al. (2015) builds directly on the work of the Sound Approach, although their work commenced even earlier, and the book’s other taxonomic hypotheses will doubtless be tested in the coming years. Ultimately, this inspiring book gives considerable hope to amateur and professional ornithologists alike that we don’t need to visit the ends of the earth to make major ornithological discoveries. Go boldly forth into the night with sound-recording gear…

Alexander C. Lees
References:
Status and distribution of Golden-rumped Euphonia
Euphonia cyanocephala on the Guiana Shield, South America

by Johan Ingels, Maxime Dechelle, Vincent Pelletier, Tanguy Deville, Jan Hein Ribot & Olivier Claessens

Received 12 January 2015

Summary.—Golden-rumped Euphonia *Euphonia cyanocephala* is widely but patchily distributed in South America. Until now, its presence over the Guiana Shield was poorly known. We discuss its status and distribution in French Guiana, Surinam and Guyana, and adjacent northern Brazil and southern Venezuela. We believe that the erratic and unpredictable occurrence of this euphonia over the Guiana Shield probably reflects seasonal, nomadic movements. Almost all observations in French Guiana and Surinam were made during the short and long dry seasons of February–March and July–December, respectively, suggesting that these are nomadic movements probably related to the seasonal availability of particular dietary items.

Golden-rumped Euphonia *Euphonia cyanocephala* of Trinidad and South America, Antillean Euphonia *E. musica* of the West Indies, and Blue-hooded Euphonia *E. elegantissima* of Middle America were long treated as conspecifics (Isler & Isler 1999), but are now considered to be different species (Meyer de Schauensee 1966, Ridgely & Tudor 1989, Sibley & Monroe 1990, Hilty 2011, Remsen et al. 2014). *E. cyanocephala* is widespread, albeit patchily distributed in South America (Restall et al. 2006, Hilty 2011). It occurs in northern Venezuela from Sucre and Monagas throughout the coastal cordilleras with isolated observations in Amazonas (Zimmer & Hilty 1997), and further throughout the Andes south to northern Argentina, as well as in the lowlands and coastal mountains of south-east Brazil and adjacent Argentina and Paraguay (Areta & Bodrati 2010). Milensky et al. (2005) mentioned Golden-rumped Euphonia for French Guiana, Surinam, Guyana and the south-east Venezuelan state of Bolívar. However, its status and distribution across the Guiana Shield are poorly known (Hilty 2011).

The larger part of the range of Golden-rumped Euphonia is occupied by *E. c. cyanocephala*, while *E. c. pelzelni* and *E. c. insignis* occur from southern Colombia to Chimborazo in western Ecuador, and on the east slope of the Andes in Ecuador, respectively.

The species occurs in a variety of habitats, in humid and fairly dry regions, from sea level to 3,260 m. It is observed in the canopy of lowland and montane forest, in shade plantations, thickets and trees in clearings, in gardens and parks. It usually forages in pairs or small groups, as well as in mixed-species flocks, mostly in the canopy but it descends to bushes in open places to feed on berries (Isler & Isler 1999, Restall et al. 2006, Areta & Bodrati 2010, Hilty 2011). Here, we present new information on the species’ status and distribution in French Guiana, Surinam and Guyana, as well as adjacent northern Brazil and southern Venezuela.
Methods

We discuss the status and distribution of the Golden-rumped Euphonia in French Guiana, Surinam and Guyana, and adjacent northern Brazil (Amapá, Pará, Roraima) and southern Venezuela (Bolívar). In addition to data in the literature and on internet sites (www.faune-guyane.fr/, www.wikiaves.com.br), we present unpublished field observations made in Surinam and French Guiana held in the databases of Ribot (2014) and Comité d’Homologation de Guyane (OC). We also present previously unpublished data on relevant specimens collected in Surinam and Venezuela, and now in the American Museum of Natural History (AMNH), New York, and Colección Ornitológica Phelps (COP), Caracas, respectively (Appendix 1). Specimens at the first-named museum were checked by JI in 1984 and at the latter by S. L. Hilty in 2014.
Results

Localities across the Guiana Shield where Golden-rumped Euphonias have been recorded as well as intensively surveyed areas where this euphonia has not yet been recorded are shown in Fig. 1. The number of records per month in Surinam and French Guiana since 1902, are presented in Fig. 2, wherein we also provide generalised information on rainfall patterns across the Guiana Shield by indicating mean monthly rainfall in 1960–90 at Pokigron (c.04°29’N, 55°22’W) in central Surinam (CRU 2015).

French Guiana.—First recorded by Thiollay (1986). He observed it four times at forest edges near Saül in central French Guiana between mid-October and mid-December 1984, but precise dates and details are no longer available (J.-M. Thiollay in litt. 2011). These records were mentioned by Tostain et al. (1992) under ‘Euphonia aureata’. On 29 October 2002, VP observed two male *E. cyanocephala* in the crown of a tree at the edge of a small clearing at the viewpoint along the trail on Monts La Fumée, c.2.5 km north-east of Saül. The clearing is surrounded by primary forest. On 8–9 October 2008, MD photographed a pair foraging in the canopy at the edge of the same clearing (Renaudier et al. 2010). On 13 July 2009, a flock of at least 12, including males and females, and a young male in transitional plumage (Fig. 3), was photographed by TD at Monts Atachi Bakka, near Maripasoula (Renaudier et al. 2010). A pair of *E. cyanocephala* was seen in canopy on the outskirts of Saül, on 9 October 2009, by H. Michel & S. Nicolle (Renaudier et al. 2010) and on 16 November 2012, by OC, P. Huet & A. Pataud. However, *E. cyanocephala* has never been recorded at Saint Eugène, near the hydro-electric dam of Petit Saut, where OC studied birds in 1993–96 (Claessens 2002), or at Nouragues Nature Reserve in eastern French Guiana, despite many avifaunal surveys since its creation in 1995 (Thiollay et al. 2001). During intensive surveys of Mont Itoupé, a forested table mountain in the interior of French Guiana, c.70 km south of Saül, VP, G. Léotard & O. Tostain did not find the species in March 2010, nor did OC & A. Renaudier in October 2010.

Surinam.—Between September 1902 and September 1905, B. Chunkoo & H. R. Putscher collected eight *E. cyanocephala* in Surinam for Walter Rothschild in England (T. Trombone in litt. 2009). They are now at AMNH: six are labelled ‘near Paramaribo’, one ‘rijweg near Paramaribo’, i.e. a road leaving Paramaribo towards Uitkijk, and one ‘Saramacca District’, which is adjacent to Paramaribo (Appendix 1). Therefore, all were collected close to sea level in a large area around Paramaribo, which was still largely forested in the early 20th century (Haverschmidt & Mees 1994; A. Spaans in litt. 2009). AMNH 511836, from an unknown locality in Saramacca District, was collected on 9 December 1904, not 7 December 1904 as stated in Haverschmidt & Mees (1994).

it has not been observed at localities such as the Zanderij savanna, the Kasikasima Top, the Kaysergebergte and Sipaliwini savanna in the interior of Surinam (Mittermeier et al. 2010, O’Shea & Ramcharan 2012, Ribot 2014).

Guyana.—During intensive surveys since 1993, *E. cyanocephala* was not recorded in Iwokrama Forest, the Kanuku Mountains, Rupununi savannas, along the upper Essequibo River and in the Acary Mountains, all in the southern half of Guyana (Parker et al. 1993,

Venezuela.—Snyder (1966) mentioned *E. cyanocephala* for the Venezuelan side of Mount Roraima, near the junction of the Guyana, Venezuela and Brazil borders. It also occurs at other localities near the border with Guyana in south-east Bolívar. On 27 January 1948, W. H. Phelps Jr. collected a male at the western base of Uaipán Tepui and, on 16 March 1950, M. Castro took a pair on the slopes of Mount Roraima (Appendix 1). Subsequently, *E. cyanocephala* was seen in Imataca Forest Reserve, c.15 km east of El Palmar by T. A. Parker in February 1985 and 1987, and by S. L. Hilty in February 1989 and 1995, while C. Parrish observed the species near Santa Elaena de Uairén in the late 1970s (Hilty 2003; S. L. Hilty in litt. 2014).

Brazil.—Until recently, there were no records north of the Amazon, i.e. in the states of Amapá, Roraima or northern Pará (Novaes 1980, Silva et al. 1997, Naka et al. 2006; C. Carlos in litt. 2009). However, on 13 January 2011, R. Czaban photographed a pair near Pacaraima, a municipality in north-west Roraima (WA285878–79).

Discussion

Distribution.—In the early 20th century, Golden-rumped Euphonia was rather common in the forested interior of the Guianas (Penard & Penard 1910). The region around Saül in French Guiana is a well-inventoried part of this French overseas department (Renaudier 2009). Therefore, it is unsurprising that most records of *E. cyanocephala* were made there, while the avifauna of other parts of central or southern French Guiana is still poorly studied.

A large area around Paramaribo was still largely forested in the early 20th century, but is now seriously degraded. In the early 1900s, *E. cyanocephala* appeared to be more numerous in the coastal region of Surinam during the drier months of the year (Penard & Penard 1910), i.e. the short dry season of February–March and long dry season of July–December (CRU 2015). According to two Surinamese aviculturists (H. Robert & J. Luchmun pers. comm. to JHR), in that epoch the species was also trapped for trade near Leonsberg and along Weg naar Zee in the coastal region near Paramaribo. However, nowadays *E. cyanocephala* is trapped around Kwamalasamutu, a village of Trio Indians surrounded by forest on the Sipaliwini River in southern Surinam. Although much field work is conducted around Paramaribo and in Saramacca District (Ottema et al. 2009, Ribot 2014), no sight records in the coastal region have been reported in recent decades. Recent, reliable observations in Surinam are from forested hills in the interior, e.g. the Voltzberg, Lelygebergte, Tafelberg, Grensgebergte, Wilhelminagebergte and especially Brownsberg, now a well-surveyed reserve managed by STINASU (Foundation for Nature Conservation in Suriname).

The range of *E. cyanocephala* in southern Brazil generally reaches as far north as southern Bahia, Goiás and Mato Grosso (Sick 1993), with the northernmost records in the Serra dos Carajás (c.06°00’S, 50°20’W) in central Pará, where the species has been observed and tape-recorded on several occasions (Pacheco et al. 2007; G. M. Kirwan in litt. 2015), i.e. well south of the Amazon and c.1,100 km from Saül in French Guiana, the nearest locality on the Guiana Shield where this euphonia has been reported.

In Venezuela, the population of *E. cyanocephala* on the Guiana Shield in southern Bolívar is separated by c.470 km from two observations at Junglaven camp in Amazonas (05°06’N, 66°44’W; Zimmer & Hilty 1997).
Localities where *E. cyanocephala* has been recorded on the Guiana Shield post-1970 form two groups (Fig. 1). One is restricted to the forested and hilly interior of Surinam and extends over central French Guiana, following the ‘Inini-Camopi’ Mountains including Mounts Atachi Bakka and Saül (Barret 2001). A second group of records is concentrated in the montane region at the junction of the Guyana, Venezuela and Brazil borders.

Habitat.—Across the Guiana Shield (Fig. 1), the species has an obvious preference for the montane interior. No recent observations have been made in the coastal area despite constant effort by birdwatchers and surveys by ornithologists. Most sightings are nowadays made around open areas on forested hills at altitudes between c.200 and 2,000 m. In north-east Argentina, the species is commoner in mountainous regions and makes only slight incursions into the lowlands (Areta & Bodrati 2010).

Abundance.—Due to their preference for the forest canopy, and despite males being quite colourful, Golden-rumped Euphonias can easily escape detection. The warbling song may help to locate them. Nevertheless, with just 13 records in the 21st century, the species certainly is rare or under-recorded on the Guiana Shield, in contrast to formerly (Penard & Penard 1910), which suggests that it was more abundant there in the past. The degree and causes of this potential decline are unknown, but any change in the species’ habitats in this region appears unlikely. It is most frequently seen foraging in pairs, small groups or multi-species canopy flocks. In north-west Argentina and south-east Brazil, flocking with congeners appears to be related to the recently described longitudinal migration of Golden-rumped Euphonias (Areta & Bodrati 2010).

Seasonal movements.—Altitudinal movements are known for many bird species occurring at higher elevations, especially in the Andes (e.g. Loiselle & Blake 1991, Bildstein 2004, Chaves-Campos 2004). At a much smaller scale, in the Guianas, several high-altitude, frugivorous, birds like Sharpbill *Oxyruncus cristatus* and White Bellbird *Procnias albus* occur during the long dry season in the lowlands and littoral of French Guiana and Surinam, far from the interior hills where they breed (A. Renaudier & O. Ottema in litt. 2009; OC pers. obs.). Although the sample is small, it is striking that most records of the species in French Guiana and Surinam, including those by Thiollay (1986), occurred during the drier seasons of the year (Fig. 2)

Until now, *E. cyanocephala* was presumed to be a resident breeder in French Guiana and Surinam (Ottema et al. 2009). However, longitudinal migration has recently been described for the population breeding in south-east Brazil and migrating to Argentina (Misiones) and Paraguay in the austral autumn / winter (Areta & Bodrati 2010). Conversely, we believe that the species’ sporadic occurrence on the Guiana Shield can be interpreted as seasonal movements from the highlands at the western edge of the Guianas into the hill and montane forests in the interior of these countries. The paucity of records, even in well-surveyed areas, indicates that these movements do not constitute regular migrations. Hilty (2003) also noted the species’ ‘unpredictable and erratic’ occurrence in Venezuela. We speculate that these seasonal movements occur in search of food, although it is unclear if they are related to the fruiting season of their main foods, e.g. mistletoes (Isler & Isler 1999, Areta & Bodrati 2010, Hilty 2011). More observations are clearly needed to document and understand the pattern of occurrence of Golden-rumped Euphonia on the Guiana Shield.

Acknowledgements

We thank Frederik Brammer, Caio Carlos, Steven Hilty, Guy Kirwan, Alberto Masi, Christopher Milensky, Mark Robbins, Harry Robert and Jean-Marc Thiollay for information concerning the occurrence of Golden-rumped Euphonias in French Guiana, Surinam, Guyana, south-east Venezuela and northern Brazil. We thank Thomas Trombone for photographs of specimens at AMNH, Steven Hilty and Miguel Lentino for details of specimens at COP, and Annie & Jean-Paul Brun, Armelle Gairard, Steven Hilty, Philippe Huet, Hervé Michel, Serge Nicolle, Brian O’Shea, Chris Farrish, Alain Pataud, Gérard Viret, Steven Wytema, Sophie
Zimmerman, and particularly Mark Robbins, for permitting us to include their observations. We gratefully mention the bureau for environmental studies ECOBIOYS for communicating the results of their Mont Houpe mission commissioned by the Park Amazónico de Guyane. We greatly appreciate comments by Nacho Areta, Des Jackson, Guy Kirwan and Alex Lees on earlier drafts of this paper. Finally, we are most grateful to Amandine Bordin and Véronique Charlet for preparing the map, and to Raoul Ribot for preparing the graph.

References:

© 2015 The Authors; Journal compilation © 2015 British Ornithologists’ Club

Appendix 1: specimens of Golden-rumped Euphonia Euphonia cyanocephala collected on the Guiana Shield in Surinam and south-east Venezuela

Given are: collection number, sex, locality, date of collection and collector. See text for museum acronyms.

Surinam

AMNH 511839, ♂, near Paramaribo, 17 July 1902, B. Chunkoo.

AMNH 511840, ♂, near Paramaribo, 1 September 1902, B. Chunkoo.

AMNH 511841, ♂, rijweg near Paramaribo, 21 September 1902, B. Chunkoo.

AMNH 511837, unsexed (female-like plumage), near Paramaribo, 14 August 1904, B. Chunkoo.

AMNH 511838, ♂, near Paramaribo, 7 December 1904, B. Chunkoo.

AMNH 511836, ♀, Saramacca District, 9 December 1904, B. Chunkoo.

AMNH 511843, ♂, near Paramaribo, 17 June 1905, H. R. Putscher.

AMNH 511842, juvenile ♂, near Paramaribo, 10 September 1905, H. R. Putscher.

Venezuela

COP 50852, ♂, Mount Roraima, 16 March 1950, M. Castro.

COP 50851, ♀, Mount Roraima, 16 March 1950, M. Castro.
Avifaunas of the Kumawa and Fakfak Mountains,
Indonesian New Guinea

by Jared Diamond & K. David Bishop

Received 13 February 2015

Summary.—Of the 11 outlying mountain ranges along New Guinea’s north and north-west coasts, the Kumawa and Fakfak Mountains are those most isolated from the Central Range and from other outliers by flat lowlands almost at sea level. The Kumawa Mountains were previously unexplored ornithologically, and the Fakfak Mountains unexplored above 900 m. We report four surveys conducted in 1981, 1983 and 2013. The known combined avifauna is now 283 species, including 77 upland species of which the two ranges share at least 57. Among Central Range upland species whose geographic and altitudinal ranges make them plausible candidates to have colonised Fakfak and Kumawa, 15 are nevertheless unrecorded in both Fakfak and Kumawa. Of those 15, 13 are also unrecorded in the mountains of Yapen Island, which at Pleistocene times of low sea level was also separated from other New Guinea mountains by a wide expanse of flat lowlands. This suggests that colonisation of isolated mountains by those particular upland species depends on dispersal through hilly terrain, and that they do not disperse through flat lowland forest. Because of the low elevation, small area and coastal proximity of the Kumawa and Fakfak Mountains, avian altitudinal ranges there show the largest Massenerhebung effect (lowering) of any New Guinea mainland mountains known to us. We compare zoogeographic relations of the Fakfak and Kumawa avifaunas with the mountains of the Vogelkop (the nearest outlier) and with the Central Range. Mixed-species foraging flocks are of two types: small insectivorous flycatchers and warblers, and larger brown and black omnivores. We provide preliminary descriptions and four photographs of 14 distinctive undescribed taxa or pairs of taxa that we observed in the field, and that await collection and naming, in addition to the three endemic taxa already described. An appendix lists, for all 283 known species, the records, local names in the Baham language where known, and altitudinal ranges and abundances on each of our four transects.

The mountains of the island of New Guinea consist of the Central Range that forms the island’s east / west backbone, plus 11 isolated smaller and lower ranges along the north and north-west coasts (Fig. 1). New Guinea supports a rich upland avifauna, with nearly 200 bird species or superspecies confined to mountains and absent from the flat lowlands. For these upland species, the outlying mountain ranges, separated from each other and from the Central Range by intervening lowlands, constitute virtual islands of upland habitat. They offer an opportunity to study problems of island biogeography within a mainland setting (Brown 1971).

One such problem is to understand species differences in colonisation and distribution: why are some species much more widely distributed than others? For instance, some upland species, e.g. Mountain Fruit-Dove *Ptilinopus bellus* and White-eared Bronze Cuckoo *Chalcites meyerii*, occupy all 11 outlying ranges. Others, e.g. Mountain Kingfisher *Syma megarhyncha* and Slaty-headed Longbill *Toxorhamphus poliopterus*, occur on only 1–2 outlying mountains, respectively, and have not been recorded on other mountains within their altitudinal and
geographic range, despite being readily detectable. Another problem is to understand differences in the evolution of endemism: some species occupy many mountains as a single subspecies (e.g., Red-breasted Pygmy Parrot *Micropsitta bruijnii* and Red-collared *Myzomela rosenbergii*), while others are divided into many subspecies or even different allospecies on different mountains (e.g., the four allospecies of the Smoky Honeyeater superspecies *Melipotes*). Under current taxonomy, the outlying mountains support two endemic full species (Vogelkop Whistler *Pachycephala meyeri* and Emperor Bird of Paradise *Paradisaea guilielmi*), 14 endemic allospecies within nine superspecies, and many endemic subspecies. Why do species or superspecies differ so markedly in their proneness to geographic variation?

Of the 11 outlying ranges, the Fakfak and Kumawa Mountains are among the smaller in area and among the lower ones in elevation: the Fakfaks (c.1,400 m high) are the second lowest, and the Kumawas (1,654 m) tie for third lowest. However, four features make them of special interest. First, they comprise by far the most isolated upland habitats, being separated by 50–75 km of completely flat lowlands almost at sea level from the nearest hilly terrain of the Central Range, and by 30 km of flat lowland terrain from each other. In contrast, of the other outlying ranges, seven are connected by low hills to the Central Range, from which the other two (the Adelberts and Huon Peninsula) are separated by only narrow strips of flat lowlands. This difference, combined with knowledge of the composition of the Fakfak and Kumawa upland avifaunas, may illuminate mechanisms by which upland species colonise outlying ranges. Second, if one considers the outlying ranges as being distributed along a segment of a distorted circle along New Guinea’s north and north-west coasts, the Fakfak and Kumawa Mountains define the south-west end of it. Third, the Fakfaks and Kumawas are those outliers with by far the most karstic terrain, which explains their
abundant populations of an otherwise rare and little-known New Guinea bird species, Greater Melampitta *Megalampitta gigantea*, a karst specialist (Diamond 1983). Finally, they support populations of Vogelkop Bowerbird *Amblyornis inornata* whose bower form and decorations differ greatly from those of morphologically nearly identical conspecific populations in other mountains (Fig. 2).

Prior to our surveys, the Kumawa avifauna was wholly unknown, while knowledge of the Fakfak avifauna was based only on two small collections made at low elevations in 1896 without field observations. The paucity of earlier surveys was partly due to the dangers formerly posed by the inhabitants of the Fakfaks (cf. Doherty’s account in Rothschild & Hartert 1901), and partly to the physical and logistical difficulties of penetrating inland across karstic terrain without surface water to reach the highest peaks.

This paper describes our four surveys: one of the Fakfak Mountains (by JD in 1981) and three of the Kumawa Mountains (two by JD in 1983, and one by JD & KDB in 2013). In 2013 we reached the highest Kumawa summit, while in 1981 JD reached an elevation c.85 m below the highest Fakfak summit. Subsequent to Diamond’s 1981 Fakfak survey, Gibbs (1994) and Rheindt (2012) surveyed Fakfak birds in 1992 and in 2008 and 2009 respectively. In Table 1 we list all 283 bird species recorded from the Fakfak and Kumawa Peninsulas, as well as presenting notes on 71 species of interest, and offer a preliminary biogeographic discussion of the avifaunas.

Background

Environment. — At seven weather stations in the Fakfak/Kumawa area, all of them at low elevations on or near the coast, mean annual rainfall varies from 214 to 388 cm, i.e. drier than average for New Guinea (Brookfield & Hart 1966). Presumably, rainfall is greater at higher elevations, where there are no weather stations in our area. Monthly rainfall in the locally wetter months of December–May is 2–4 times greater than in the drier months of July–November.

Karst terrain, associated with an absence of streams and other surface water, is locally widespread in the area, including on all four transects (see below). Our North Kumawa transect was entirely within karst and entirely without surface water; JD depended on rain and lianas for water during his survey. On our Central Kumawa transect, the only surface water was the marsh at our Marsh Camp in a basin without entrance or exit streams. On our South Kumawa transect there was no surface water beyond a stream rising at 490 m, but nearby was a river with a waterfall above which were several cascades visible from the air.
and on GoogleEarth. Our Fakfak transect had two small streams at 680 m and 745 m, and a few forest pools at lower elevations. While mountains rise directly from the coast around most of the perimeter of the Fakfak (or Onin) and Kumawa (or Bomberai) Peninsulas, the east side of the Kumawa Peninsula east of the base of the mountains consists of extensive flat alluvial lowlands traversed by east-flowing rivers draining the mountains.

In areas without human disturbance the natural vegetation covering the Fakfaks and Kumawas consists almost entirely of forest. The only exceptions we saw were several small marshes with standing water in small basins at elevations of 790–1,010 m in the Central Kumawas. One of those was the site of our Marsh Camp, where we could observe the water level rising and falling from day to day in synchrony with rainfall. Anthropogenic second growth and coconut plantations are widespread in the many coastal villages and towns of the Fakfak Peninsula, but on the Kumawa Peninsula are confined to the vicinity of a few coastal villages (see People and languages), plus a narrow coastal strip that had been logged commercially at the northern (beach) terminus of our North Kumawa transect.

Forest composition on our Fakfak transect was studied by the forester H. Makabory, who accompanied JD. There were few tree ferns, little ground moss, thin soil, and much leaf litter at low elevations because fallen leaves that land on hot karst rock tend to dry out and then decompose very slowly. Forest canopy was 20–30 m high and dominated by *Pometia acuminata*, *P. coreaceae*, *P. pinnata*, *P. tomentosa*, *Sterculia macrophylla*, *Intsia palembanica*, *I. bijuga* and *Anisoptera polyandra*. Above the canopy towered *Araucaria cunninghamii* up to 49 m tall and 130 cm in diameter. Other common trees were *Casuarina montana*, *Cinnamomum massoia*, *Cupressus* sp., *Dillenia* sp., *Eugenia* sp., *Hopea papuana*, *Koordersiodendron bogoriense* and *Wormia* sp., and (at higher elevations) *Agathis labillardieri*, *Notothofagus* sp. and *Quercus* sp. Trees growing on limestone in the Fakfaks were generally similar to those growing on limestone in the Arfaks, except for the rarity of *Palaquium amboinensis* in the former.

Forest composition at our North Kumawa transect was studied by the forester F. Sadsuitubun (Directorate General of Forestry 1975), who accompanied JD. Common lowland tree species were *Albizia falcata*, *Alstonia scholaris*, *Burckella* sp., *Calophyllum* sp., *Cananga odorata*, *Canarium indicum*, *Intsia bijuga*, *I. palembanica*, *Palaquium* sp., *Planchonella* sp., *Pometia pinnata*, *Spondias cytherea* and *Terminalia* sp. Common species at higher elevations were *Anisoptera polyandra*, *Casuarina montana*, *Elaeocarpus* sp., *Intsia* sp., *Octomeles sumatrana*, *Palaquium* sp., *Podocarpus nereifolia* and *Spondias dulcis*. Sadsuitubun observed *Agathis labillardieri* and *Araucaria cunninghamii* elsewhere in the Kumawas, in non-karst wetter areas, and we observed *Araucaria* on ridges above our Central Kumawa Marsh Camp.

People and languages.—Today, the Fakfak Peninsula’s human population lives almost entirely in lowland villages, as well as in the growing town of Fakfak on the south coast. Formerly, the mountains were also inhabited, and the collector William Doherty encountered hundreds of mountaineers during his 1896 visit. As is true in coastal mountains elsewhere in New Guinea, one reason why people formerly lived in the mountains was to avoid the risk of murderous attacks and slave-hunting expeditions to which sea-going raiders constantly exposed coastal peoples. But the former Fakfak mountaineers, like New Guinea coastal mountaineers elsewhere, have abandoned their mountain villages and moved to the coast, on their own initiative and urged by the government, in order to gain access to stores, schools and medical care. By the time of Diamond’s 1981 visit, the sole remaining mountain village still inhabited on the Fakfak Peninsula was the small settlement of Wanggasten. Local informants showed Diamond the site of another former mountain village called Siembra, and mentioned another such village, Rombena, which was also mentioned to Rheindt (2012), both abandoned (according to the informants) between 1967 and 1971.
While the widespread language of the Fakfak Peninsula is now Indonesian, three indigenous languages are still spoken locally (Lewis 2009): the Austronesian language of Onin, with 500 recent speakers, on the peninsula’s western tip and around Fakfak town; and the Papuan languages Iha and Baham, which are related to each other, with 5,500 and 1,100 recent speakers in the peninsula’s western and eastern halves, respectively. Several additional indigenous languages, each with a few hundred speakers, are spoken on three islands just south of the peninsula and on the north-east coast.

In contrast to the (former) habitation of the Fakfaks, the Kumawa Mountains are entirely uninhabited today, and early 20th-century Dutch maps also mark no villages. No signs of present or former human use were visible to us from the air, nor did we encounter any signs on the ground during our three visits. The reasons are readily understandable from the terrain: the lack of surface water in the north and the steep karst topography of most of the south. A single village, Nusawulan, is sited on Nusawulan Island and on the adjacent mainland coast at the peninsula’s southern tip. This is the sole village from which it is possible to ascend into the southern slopes of the Kumawas, which rise steeply immediately from the south coast. Nusawulan inhabitants speak the Baham language spoken in the eastern Fakfaks, and claim that their ancestors moved from the Fakfak area to Nusawulan about three generations before Diamond’s 1983 visit. Several other villages are located on the Kumawa Peninsula’s east coast but are separated by c.30 km of flat lowlands from the Kumawas’ easternmost foothills.

All of Diamond’s local informants in 1981 and 1983 spoke the Baham language: from New Weri and Wanggasten villages in the Fakfaks, and from Nusawulan village in the South Kumawas. We present lists of Baham bird names that Diamond recorded from these informants (Appendix).

Other ornithological studies.—In addition to our studies, there have been five other studies or collections in Fakfak, and one in Kumawa.

Fakfak.—Prior to Diamond’s 1981 visit, during three months of 1896–97 William Doherty collected 97 species for the Rothschild museum while based at Sekru near the present town of Fakfak (Rothschild & Hartert 1901: 56–57). Doherty’s letters state that he collected up to elevations of at least 900 m, but was limited by hostile natives. Most of his specimens evidently came from low elevations, because he obtained only eight upland species, all of which Diamond found at elevations below 790 m.

Karl Schädler collected 76 species for the Leiden museum while also based at Sekru in the same months of 1896–97 as Doherty (Finsch 1900). He evidently remained at low elevations, because his collections include just one species confined to uplands in this area (Trumpet Manucode Phonygammus keraudrenii), which JD found to descend to 400 m.

While based at Fakfak and the nearby Kaukas, C. L. J. Palmer van den Broek & P. J. van Cloven collected birds presented to the Leiden museum in 1908 (van Oort 1909). Unfortunately, most of their specimens were unlabeled, and some of these are of species or subspecies confined to other parts of New Guinea, while two of the species that van Oort reported as ‘evidently from Fakfak’ probably do not occur there (New Guinea Vulturine Parrot Psittrichas fulgidus and Masked Bowerbird Sericulus aureus). Of the 19 species labeled as ‘Fakfak’ or ‘Kaukas’, all are lowland species and all were subsequently observed in Fakfak by JD and / or D. Gibbs except Eastern Great Egret Ardea modesta and Large-tailed Nightjar Caprimulgus macrurus, both of which JD observed in Kumawa and whose presence in Fakfak would be unsurprising. Because of the uncertainties about collecting locality, we do not discuss Palmer van den Broek’s and van Cloven’s collections further.

Subsequent to JD’s 1981 visit, D. Gibbs observed 106 species during eight days in September 1992 along a trail cut by oil exploration teams from the coast up to and over the
Fakfak summit (c.1,400 m). In two visits in August / September 2008 and June 2009 totalling nine days, reaching elevations of 950 and 1,300 m, respectively, F. Rheindt observed 147 species. Gibbs and Rheindt did not collect specimens. Because Gibbs reached higher elevations than Diamond or any other observer, he recorded 12 high-elevation bird species recorded there by no one else (see Appendix).

Kumawa.—In 1948–49 Sten Bergman spent three weeks collecting on the east coast of the Kumawa Peninsula at Kambala village (133°25'E, 03°52'S), in flat lowlands far from the mountains (Gyldenstolpe 1955). He collected or observed 51 species, all of them species of lowlands or coasts, and all but five were subsequently observed by us.

Present surveys.—We carried out one Fakfak survey and three Kumawa surveys of birds, all of them jointly with forest surveys by staff of the Indonesian Forestry Department, Environment Department, or both. The coordinates that we provide below for our sites were determined by GPS during our 2013 Central Kumawa survey, but are estimates derived from maps for our other three surveys, when GPS was not available.

Fakfak, 1981.—JD and the forester H. Makabory arrived at the town of Fakfak on 17 February. After four days on the coast nearby, on 21 February they went by boat to the coastal village of New Weri south-east of Fakfak (c.132°38'E, 03°13'S), where they obtained carriers. Setting out on foot on 22 February, they reached a forest campsite at 620 m. (This and all other elevations measured by us and cited here were determined with Thommen altimeters in feet, and are converted to metres and reported as the average of multiple readings at each site on different days.) On 23 February they reached Wanggasten village at 690 m (c.132°42'E, 03°07'S) and on 27 February their highest campsite in forest at 1,210 m (c.132°39'E, 03°03'S), where they remained four nights, each day climbing to 1,315 m. They descended to Wanggasten on 3 March, to a forest campsite at 360 m on 5 March, and to New Weri and then by boat on 6 March to Fakfak, from which they departed on 8 March.

North Kumawa, 1983.—This survey was undertaken by JD, F. Sadsuitubun of the Indonesian Forestry Department, and A. Irwanto of the Indonesian Environment Department. Following an aerial reconnaissance of the Kumawa Mountains, they and their carriers arrived from Fakfak by boat, and on 25 August established Camp 1 on a beach in the south-east corner of Teluk Sebakor (Sebakor Bay), on the north coast of the Kumawa Peninsula (c.132°54'E, 03°39'S). Over the next 14 days, proceeding south-southeast on a compass bearing of 160°, they cleared trail and moved to a series of nine camps: Camps 2–10, on 28, 29, 31 August, 1, 2, 4, 5, 6 and 8 September, respectively, at elevations of 260, 405, 520, 555, 740, 690, 800 and 905 m, respectively. The highest elevation reached was 938 m, beyond Camp 10, which was estimated to be c.11 km from the coast (c.132°55'E, 03°46'S). Overland progress was slow because of the undulating karst terrain and the complete lack of water other than lianas and occasional rain. On 10 September the group descended to Camp 4, on 11 September to Camp 1 on the beach, and on 12 September they departed by boat.

South Kumawa, 1983.—This survey was undertaken by JD, while A. Irwanto performed conservation surveys. Whereas the ascent inland from the beach in North Kumawa was very gradual, such that an elevation of just 938 m was reached after 11 km, the ascent inland from the beach in South Kumawa was steep, such that an elevation of 1,438 m was reached after only 5 km. On 16 September, JD and 12 carriers travelled by boat from Fakfak to Nusawulan village on the beach at the south tip of the Kumawas opposite Nusawulan Island (c.132°58.8'E, 04°06.4'S, per C. Thébaud). On 17 September they transferred to the beach opposite Kerowagi Island (c.133°02'E, 04°04'S). On 18 September they made two trial ascents from Air-Keser beach and Fatukama beach; the latter was less rocky. Camp 1 was established on Fatukama beach (133°04.05'E, 04°03.33'S, per C. Thébaud). On 19 September,
proceeding inland from Fatukama beach on a bearing of 350°, they climbed to Camp 2 near a stream (the highest surface water encountered on this transect) at 485 m. On 20, 21 and 24 September they reached Camps 3, 4 and 5 at 923, 1,137 and 1,390 m, respectively. The highest elevation reached was 1,438 m on the crest of the ridge above Camp 5 (c.133°04.46'E, 03°59.30'S per V. Broissart). On 28 September they descended to Fatukama beach, transferred to Kerowagi beach, and surveyed the three small Baniki islets offshore. On 29 September they surveyed Kerowagi Island and a waterfall on the mainland opposite Kerowagi Island, before returning to Nusawulan village that afternoon and returning by boat to Fakfak on 30 September.

Central Kumawa, 2013.—This expedition, the last, was led and planned by R. Sneider and JD, joined by KDB, M. Ammer and T. Kammeyer, with the participation of the Indonesian Forestry Department. The approximate location of the highest Kumawa peak was already known from JD’s 1983 aerial reconnaissance flight. Sneider & JD located this peak more precisely using GoogleEarth, and Ammer confirmed it during another reconnaissance flight in January 2013. On 5–11 February 2013, Sneider, Ammer and Kammeyer used a helicopter to establish two camps: Top Camp at 1,654 m on the summit itself (133°00'32"E, 03°55'02"S) and Marsh Camp in a natural clearing at 1,026 m consisting of a marsh-filled basin encircled by hills (133°02'52"E, 03°55'13"S). Three other such marshy clearings at similar elevations were located by aerial reconnaissance within 10 km. On 13 March 2013 all five personnel, plus three Dani field assistants, flew by helicopter to Top Camp, where JD & KDB spent the next four days surveying birds on or near the summit. On 18 March the helicopter returned, brought JD, KDB, Kammeyer and the three Dani men to Marsh Camp, and departed with Sneider & Ammer. For the next eight days JD & KDB surveyed birds from Marsh Camp up to 1,210 m. On 27 March the helicopter flew us out of Marsh Camp.

Methods.—We made observations while walking trails that we cut, stopping at fruiting and flowering trees where birds gathered, and noting altitudes measured by Thommen altimeters and (in Central Kumawa) using a Garmin GPS. We recorded vocalisations with Sony TCM 5000 EV tape-recorders, played back unidentified vocalisations in the field to attract and identify the authors, and re-listened to recordings in camp each day because our directional microphones often captured vocalisations not noticed in the field. Forestry Department personnel operated mist-nets at North Kumawa Camps 9–10 and South Kumawa Camps 4–5. Those birds trapped were weighed and measured. All were then released in North Kumawa and most in South Kumawa. From 39 South Kumawa birds retained as specimens in the Museum Zoologicum Bogoriense, Bogor, three new subspecies were described previously (Smoky Robin *Peneothello cryptoleucus maximus*, Sclater’s Whistler *Pachycephala soror octogenarii* and Smoky Honeyeater *Melipotes cf. fumigatus kumawa*; Fig. 4) by Diamond (1985). The present paper does not name other new taxa. Diamond (1985) also reported 16 records of distributional interest for Fakfak and 28 for Kumawa. Our other prior publications based on our Fakfak and Kumawa studies were accounts of *Megalampitta gigantea* (Diamond 1983), and of bower-building by *Amblyornis inornata* (Diamond 1986, 1987a, 1988).

Species list

The Appendix summarises available information for the 283 species recorded in the Fakfaks and Kumawas, considering the two ranges separately. For each species, column 2 indicates whether the species was recorded in each of our four surveys, in the four other Fakfak surveys (by Doherty, Schädler, Gibbs, and Rheindt), and in Bergman’s Kumawa survey. Column 3 categorises abundance in four categories, from the least abundant to most abundant species (categories 1–4), in each of our four surveys. Column 4 provides
altitudinal ranges in each of our four surveys. Column 5 presents two sets of bird names in the Baham language: the names given by informants in the Fakfaks and those given at Kumawa’s Nusawulan village. Our nomenclature follows that of Pratt & Beehler (2014).

Upland species

Definition.—The published literature concerning avian distributions on tropical mountains commonly refers to ‘montane species’. A common-sense definition of a montane species is ‘a species confined to the mountains, and absent at sea level’. For example, Beehler *et al.* (1986) considered as montane those New Guinea birds largely confined to elevations above 1,000 m, whereas Archbold & Rand (1935: 542) identified a break at 1,700 m. Other more finely divided classifications split a separate hill avifauna below the montane avifauna, or split the montane zone into lower (0 to 600–700 m), middle (800–1,500 m) and upper (1,500–2,000 m) montane zones (Stresemann 1923).

Such definitions would be unambiguous if New Guinea bird species fell into two or more cleanly divided groups: e.g., to take the simplest twofold classification, species occurring from sea level upwards (‘lowland species’) vs. species confined to elevations above some particular altitude such as 1,000 m or 1,700 m (‘montane species’). In reality, quantitative analysis reveals that altitudinal floors of New Guinea bird species are distributed continuously, from sea level to 3,800 m (Diamond 1972: 67–70). We see no value to considering species as montane only if their altitudinal limit exceeds some arbitrary value, e.g. 1,500 m.

Instead, we distinguish between two categories of species: ‘lowland species’ vs. ‘upland species’, meaning ‘those species present in’ vs. ‘those species absent from’ the flat lowlands at or near sea level. All species absent from the flat lowlands are considered upland species, irrespective of whether their lower altitudinal limit is 500 m or 3,500 m. This definition has the advantage of recognising a biologically significant attribute: the ability or inability to exist or disperse in the flat lowlands at sea level seems to have had an important influence on the composition of the Fakfak and Kumawa avifaunas (see below). Of course, putting our definition into practice poses its own sources of ambiguity, but they are minor compared to the complete arbitrariness of categorising species by whether their lower altitudinal limits lie above or below 800, or 1,500 m, or some other arbitrary elevation.

The five principal sources of ambiguity that we encountered in applying our definition were as follows. First, some species (e.g., Ornate Fruit-Dove *Ptilinopus ornatus*, Papuan Mountain Pigeon *Gymnophaps albertisii*) breed at high elevations but descend to the lowlands at or near sea level. We consider such species as upland.

Second, some species (e.g., *Psittrichas fulgidus*, Torrent Flycatcher *Monachella muelleriana*, *Sericulus aureus*) inhabit sloping hilly terrain and descend to elevations only slightly above sea level in such terrain, but are absent from flat lowlands at or near sea level. We consider such species as upland.

Third, how gentle a slope must a terrain have in order to be considered ‘flat’, and how many records from ‘flat lowlands’ suffice to disqualify a species as upland? These questions cause species of the lower hill slopes to include borderline cases. Among them, we consider Pheasant Pigeon *Otidiphaps nobilis*, Papuan Cicadabird *Edolisoma incertum* and Magnificent Bird of Paradise *Diphyllodes magnificus* as upland, but Chestnut-breasted Cuckoo *Cacomantis castaneiventris*, Pale-billed Scrubwren *Sericornis spliodera* and Fairy Gerygone *Gerygone palpebrosa* as lowland.

Fourth, some New Guinea species occur at sea level in the flat lowlands of the Fly River in southern New Guinea, but are confined to elevations above 600 m or higher in northern New Guinea, the Fakfaks and Kumawas. These include White-faced Robin *Tregellasia*
leucops, Yellow-legged Flycatcher Kempiella griseoceps, Phonygammus keraudrenii, Black-eared Catbird Ailuroedus melanotis, Spotted Honeyeater Xanthotis polygrammus and New Guinea White-eye Zosterops novaeguineae. We consider such species as upland in our study area, plus northern New Guinea.

Finally, Hooded Pitohui Pitohui dichrous and possibly some other species, while confined to elevations above 600 m in most of northern New Guinea, plus the Fakfaks and Kumawas, occur in flat lowlands not only in the Fly River bulge but also locally in several other localities. We consider Pitohui dichrous as upland.

Accordingly, approximately 77 species of the Fakfaks or Kumawas, or both, noted by an asterisk in the Appendix, rate as upland.

Differences between the Fakfak and Kumawa upland avifaunas.—The two avifaunas are largely similar. Of 77 upland species recorded in one or both ranges, 57 were found in both the Fakfaks and Kumawas, 12 only in the Kumawas and eight in the Fakfaks alone (Table 1). To interpret this apparent difference, we first consider to what extent it is probably real.

The best-attested cases of species that probably occur in only one of the two ranges involve three noisy and common species, each of which descends in the relevant range to altitudes that have already been well surveyed in the other range wherein the species has not been recorded. The species are White-striped Forest-Rail Rallicula leucospila and Ashy Robin Heteromyias albispecularis, recorded on both Kumawa transects (North and Central Kumawa) that reached its altitudinal range, but not recorded in Fakfak, and Goldenface Pachycare flavogriseum, which was abundant and noisy in Fakfak down to 787 m, but was not recorded on any of our three Kumawa transects although all three reached elevations above this.

| TABLE 1 |
| Upland species recorded only in Fakfak or Kumawa, but not in both ranges. |

<table>
<thead>
<tr>
<th>Species</th>
<th>Fakfak</th>
<th>Kumawa</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>White-striped Forest-Rail</td>
<td>Rallicula leucospila</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Bronze Ground-Dove</td>
<td>Alopecoenas beccarii</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Rufous-throated Bronze Cuckoo</td>
<td>Chalcites ruficollis</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Mountain Owlet-Nightjar</td>
<td>Aegotheles albertisi</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Feline Owlet-Nightjar</td>
<td>Aeotheles insignis</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Red Myzomela</td>
<td>Myzomela cruentata</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Spotted Honeyeater</td>
<td>Xanthotis polygrammus</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Olive Straightbill</td>
<td>Timeliopsis fulvigula</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Goldenface</td>
<td>Pachycare flavogriseum</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Large Scrubwren</td>
<td>Sericornis nouhuysi</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Grey-green Scrubwren</td>
<td>Sericornis arfakianus</td>
<td>?</td>
<td>no</td>
</tr>
<tr>
<td>Streaked Berrypecker</td>
<td>Melanochlora striativenris</td>
<td>?</td>
<td>no</td>
</tr>
<tr>
<td>Barred Cuckooshrike</td>
<td>Coracina lineata</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Varied Sitella</td>
<td>Daphoenositta chrysoptera</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Paradigalla</td>
<td>Paradigalla sp.</td>
<td>?</td>
<td>no</td>
</tr>
<tr>
<td>Lesser Ground-Robin</td>
<td>Amalocichla incerta</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Garnet Robin</td>
<td>Eugerygone rubra</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Ashy Robin</td>
<td>Heteromyias albispecularis</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>New Guinea White-eye</td>
<td>Zosterops novaeguineae</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Russet-tailed Thrush</td>
<td>Zoothera heinei</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
There are four types of uncertainties applying to the other 17 species recorded only from one of the two ranges. First, Large Scrubwren *Sericornis nouhuysi* was found in Kumawa only on the summit itself (1,654 m) and Lesser Ground-Robin *Amalocichla incerta* in Kumawa only above 1,260 m (South Kumawa) or above 1,110 m (Central Kumawa). In Fakfak the only observer to ascend above 1,280 m was Gibbs, and he reached such elevations only briefly in transit on two days. Therefore, longer surveys of high elevations in the Fakfaks are required to determine whether these two species really are absent there.

A second type of uncertainty applies to 12 species recorded in just one range, but cryptic or rare or both. Such species might simply have been overlooked in the other range, despite many days of survey time at appropriate altitudes. These include eight species recorded only in Kumawa (Bronze Ground-Dove *Alopecoenas beccarii*, Rufous-throated Bronze Cuckoo *Chalcites ruficollis*, Mountain Owlet-Nightjar *Aegotheles albertisi*, Feline Owlet-Nightjar *A. insignis*, Barred Cuckooshrike *Coracina lineata*, Russet-tailed Thrush *Zoothera heinei*, Garnet Robin *Eugerygone rubra* and *Zosterops novaeguineae*), plus four species recorded only in Fakfak (a paradigalla *Paradigalla* sp., Varied Sitella *Daphoenositta chrysoptera*, Olive Straightbill *Timeliopsis fulvigula* and *Xanthotis polygrammus*).

A third group comprises two species recorded only in Fakfak, but whose identification there was uncertain: Grey-green Scrubwren *Sericornis arfakianus* and Streaked Berrypecker *Melanocharis striativentris*.

The final uncertainty concerns Red Myzomela *Myzomela cruentata*, which was observed regularly in Fakfak but not seen in Kumawa. It gathers at flowering trees but is locally very uncommon or absent when no trees that it utilises are flowering, raising the possibility that it went unrecorded in Kumawa merely because suitable trees were not flowering during our visits. (Note added in proof: we are grateful to C. Thébaud and B. Milá for the information that they twice observed *Myzomela cruentata* in South Kumawa in November 2014.)

We guess that some of the 17 absences subject to these uncertainties are real, whereas others are artefacts of the species being overlooked in one of the two ranges. Further ornithological exploration will be required to resolve this uncertainty.

Absentees.—The New Guinea upland avifauna comprises c.190 species or superspecies (Diamond 1972). Approximately half of these could not be considered ‘good candidates’ for colonising Fakfak and Kumawa, for either of two reasons: their altitudinal range elsewhere does not descend to the summit elevations of the Fakfak and Kumawa, or their geographic range does not extend to westernmost New Guinea. Therefore, we restrict our attention to unequivocally ‘good candidates’ that possess a suitable altitudinal range (i.e. down to at least 670 m, thus providing an ample area of habitat at suitable elevations in both ranges) and a suitable geographic range (i.e. present in the Arfak Mountains of the Vogelkop Peninsula).

Of the 92 species that constitute ‘good candidates’ under these criteria, Fakfak and Kumawa support populations of 77. Table 2 lists the 15 suitable candidates not recorded from either range. Of those 15, we consider six to be so vocal or common, or both, wherever present (*Psittrichas fulgidus*, Papuan Scrub-Robin *Drymodes beccarii*, White-rumped Robin *Peneothello bimaculata*, Green-backed Robin *Pachycephalopsis hattamensis*, Ornate Melidetes *Melidectes torquatus* and Obscure Honeyeater *Caligavis obscura*), that their apparent absences in both ranges are probably real. Three species (Salvadori’s Teal *Salvadorina waigiuensis*, *Monachella muelleriana* and Torrentlark *Grallina bruijnii*) are specialists of fast-flowing mountain streams, which have not been surveyed in either range, although in aerial reconnaissance we spotted large mountain streams in Kumawa, so an opinion as to the presence of these three species must await surveys of those streams. Four species (Wallace’s Owlet-Nightjar *Aegotheles wallaci*, *Sericulus aureus*, Marbled Honeyeater *Pycnopygius*...
cinereus, Papuan Parrotfinch *Erythrura papuana*) are cryptic or rare, or both, and could have been overlooked in both ranges even if present. Two species (Pygmy Lorikeet *Charmosyna wilhelminae* and Elfin Myzomela *Myzomela adolphinae*) are nomadic flowering-tree specialists that might have been overlooked if suitable trees were not in flower at the time of previous surveys. Hence at least six, and possibly up to 15, species that are good candidates to occur in both ranges are nevertheless absent.

Taking these 15 apparent absences: is there any pattern to them? There might be none at all: colonisation involves a stochastic element and it may be mere chance that these particular 15 candidates failed, while the other 77 succeeded, and that no feature is shared by the 15 absenteees. But considerations of how upland colonists move from one mountain to another suggest a possible factor beyond chance.

Three mechanisms of avian colonisation between mountains can be distinguished. One is to fly out from one mountain over the forest canopy, either heading for another visible mountain or flying off without a visible target in the hope of eventually locating one. This mechanism is especially likely for species whose normal foraging method involves long-distance flights high above the canopy, as is true of many frugivorous pigeons and nectarivorous parrots, which are well represented among Fakfak and Kumawa montane species. In fact, the absenteees listed in Table 2 include only one such species (the nectarivorous parrot *Charmosyna wilhelminae*), meaning that such species are much more likely to be present than to be absent.

A second mechanism is juvenile dispersal through upland forests down to altitudes in the hills below breeding elevations (Diamond 1972: 30–31). This mechanism is likely to have been important for almost all of the New Guinea outlying mountain ranges, which

TABLE 2

‘Candidate’ upland species recorded in neither Fakfak nor Kumawa. ‘Candidates’ are those New Guinea upland species with altitudinal and geographic ranges suitable for colonising the Fakfak and Kumawa Mountains, but the 15 species are nevertheless unrecorded in both ranges. The altitudinal lower limit (third column) is for the population in the Arfak Mountains or elsewhere in New Guinea. Fourth column: the number of outlying mountain ranges along the north coast that the species does occupy. Fifth column: does the species occur in the mountains of Yapen Island? Last column: factors influencing detectability. Note: most candidate species were recorded on Fakfak and Kumawa, suggesting that there is a shared explanation.

<table>
<thead>
<tr>
<th>Species</th>
<th>Altitudinal lower limit (m)</th>
<th>Number of outliers</th>
<th>Yapen?</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salvadoria's Teal</td>
<td>100</td>
<td>4</td>
<td>no</td>
<td>mountain streams</td>
</tr>
<tr>
<td>New Guinea Vulturine Parrot</td>
<td>Psitrichas fulgidus</td>
<td>foothills</td>
<td>7</td>
<td>no</td>
</tr>
<tr>
<td>Pygmy Lorikeet</td>
<td>Charmosyna wilhelminae</td>
<td>500</td>
<td>2</td>
<td>ephemeral at flowers</td>
</tr>
<tr>
<td>Wallace's Owlet-nightjar</td>
<td>Aegotheles wallaci</td>
<td>100</td>
<td>2</td>
<td>nocturnal, uncommon</td>
</tr>
<tr>
<td>Masked Bowerbird</td>
<td>Sericulus superspecies</td>
<td>foothills</td>
<td>5</td>
<td>no</td>
</tr>
<tr>
<td>Elfin Myzomela</td>
<td>Myzomela adolphinae</td>
<td>800</td>
<td>3</td>
<td>ephemeral at flowers</td>
</tr>
<tr>
<td>Marbled Honeyeater</td>
<td>Pycnopygius cinereus</td>
<td>800</td>
<td>3</td>
<td>cryptic, uncommon</td>
</tr>
<tr>
<td>Obscure Honeyeater</td>
<td>Caligavis obscura</td>
<td>100</td>
<td>3</td>
<td>no</td>
</tr>
<tr>
<td>Ornate Melidectes</td>
<td>Melidectes torquatus</td>
<td>800</td>
<td>3</td>
<td>no</td>
</tr>
<tr>
<td>Torrentlark</td>
<td>Grallina bruijnii</td>
<td>800</td>
<td>5</td>
<td>no</td>
</tr>
<tr>
<td>(Green-backed) Robin</td>
<td>Pachycephalops superspecies</td>
<td>800</td>
<td>7</td>
<td>yes</td>
</tr>
<tr>
<td>Torrent Flycatcher</td>
<td>Monachella muelleriana</td>
<td>foothills</td>
<td>5</td>
<td>no</td>
</tr>
<tr>
<td>Papuan Scrub-Robin</td>
<td>Drymodes beccarii</td>
<td>500</td>
<td>7</td>
<td>no</td>
</tr>
<tr>
<td>White-rumped Robin</td>
<td>Peneothello bimaculata</td>
<td>600</td>
<td>4</td>
<td>yes</td>
</tr>
<tr>
<td>Papuan Parrotfinch</td>
<td>Erythrura papuana</td>
<td>800</td>
<td>2</td>
<td>no</td>
</tr>
</tbody>
</table>

© 2015 The Authors; Journal compilation © 2015 British Ornithologists’ Club
are connected to each other and to the Central Range by low hills. The exceptions are the Fakfaks and Kumawas, the only outliers completely separated from the Central Range and other outliers by a broad expanse (c.70–100 km) of flat lowlands close to sea level without any hills. Thus, for a species to reach the Fakfaks and Kumawas by dispersal through forests rather than by above-canopy flights, a third colonisation mechanism is required: dispersal through flat lowland forests. Could that mechanism be favoured by some upland species and not by others, and could the absentees in Table 2 be drawn especially from upland species that do not disperse via flat lowland forests?

We have no direct information about such dispersal and there is no other New Guinea mainland outlying mountain range that shares Fakfak’s and Kumawa’s isolation and thereby permits a test of our hypothesis. But a test is furnished by Yapen Island, which is one of the six large New Guinea satellite islands now separated from the mainland by such shallow seas that they must have formed part of the mainland during Pleistocene era low sea levels, which ended with worldwide glacial melting c.12,000 years ago. Yapen is the only one of the six islands with mountains exceeding 1,200 m, and its highest peak (1,496 m) is nearly as high as Fakfak’s and Kumawa’s summits. During much of the Pleistocene, what is now Yapen Island would have been part of the New Guinea mainland (Fig. 1) and its mountains would have been separated from the closest other mountains (the Van Rees range) by a 50 km-wide expanse of flat lowland forest, much as the Fakfak and Kumawa Mountains are today.

Approximately 21 upland species have been recorded on Yapen (JD unpubl.), of which all except two (Table 2: Peneothello bimaculata and Pachycephalopsis hattamensis) also occur in the Fakfaks and / or Kumawas. Of the 19 shared species, 17 occur both in Fakfak and Kumawa, i.e. Yapen’s upland avifauna is very similar to a reduced fraction of the Fakfak and Kumawa upland avifaunas, both with respect to the species present on Yapen and those absent on Yapen. This parallel supports the hypothesis that poor dispersal via flat lowland forests contributes to explaining the absentees in the Fakfak and Kumawa (and Yapen) upland avifaunas, among the upland species of the Arfaks. Those three upland avifaunas were probably founded by a combination of colonists flying over the canopy, plus those dispersing via lowland forest.

Massenerhebung effect.—If one compares the altitudinal range occupied by a given bird species on different New Guinea mountains, one finds that species tend to occur at lower elevations in the Fakfaks and Kumawas than in any other New Guinea mainland ranges of which we have experience. This illustrates a phenomenon termed the Massenerhebung effect, first described in the Alps and since found to be widespread in the tropics: altitudinal ranges are lowered and compressed on small low mountains, especially near the sea, compared to large high mountains far from the sea (Whitmore 1990: 16, 147). The explanation is thought at least partly to involve lowering of the elevation at which cloud habitually forms. Compared to New Guinea’s other outlying ranges, the Fakfaks and Kumawas are among the smallest, lowest, and closest to the sea. Therefore, it is understandable that the Massenerhebung effect is especially marked in the Fakfak and Kumawa Mountains.

For quantification and systematic analysis of this tendency, we tabulated lower altitudinal limits for all montane species in the Fakfaks and Kumawas on all four transects (see column 4 of the Appendix). We then discarded the less reliable limits: on our Central Kumawa transect, the limits of species present at our lower camp (Marsh Camp, 1,026 m) that might be expected also to occur at lower elevations, because we did not descend below Marsh Camp in Central Kumawa; on our South Kumawa transect, most species descending below 1,300 m, where JD spent little time; and most rare species, of which we had few observations. We averaged the Fakfak and Kumawa limits of each species over the 1–3
transects that remained. We then compared these limits with two other sets of limits of the same species, determined on other mountains in western New Guinea: the inland face of the Foja Mountains (Beehler et al. 2012), an outlying range higher and larger than Fakfak and Kumawa, and lying further inland; and the northern slope of the Central Range above the Idenburg River in the Snow Mountains (Rand 1942), New Guinea’s highest and largest range, lying further inland than the Foja Mountains and facing them across the basin of the Lakes Plains. That left 43 species in Fakfak and / or Kumawa for analysis, compared to 40 of those species present in both the Foja and Snow Mountains, two of those species present just in Foja, and one present only in the Snow Mountains. The results were as follows.

Among the 42 species shared between Fakfak / Kumawa and Foja, the mean lower altitudinal limit was 230 ± 55 m (mean ± s.d.) lower in Fakfak / Kumawa than in Foja. Of the 42 pairs of values, for 25 species the limit was at least 150 m lower in Fakfak / Kumawa than in Foja; the max. was 1,100 m (for Blue-faced Parrotfinch Erythrura trichroa), a nomadic species whose presence and range depend on the availability of seeding bamboo.

Among the 41 species shared between Fakfak / Kumawa and the Snow Mountains, the mean limit was 488 ± 74 m lower in Fakfak / Kumawa than in the Snow Mountains. Of the 41 pairs of values, for 25 species the limit was at least 300 m lower in Fakfak / Kumawa than in Foja; the max. was 1,545 m (for Chalcites meyerii).

Among 40 species shared between Foja and the Snow Mountains, the mean limit was 269 ± 70 m lower in Foja than in the Snow Mountains. Of the 40 pairs of values, for 28 species the limit was at least 150 m lower in Foja than in the Snow Mountains; the max. was 1,110 m (for Micropsitta bruijnii).

Table 3 illustrates these findings by listing altitudinal limits for nine abundant and conspicuous species with especially well-determined limits in Fakfak and / or Kumawa for analysis, compared to 40 of those species present in both the Foja and Snow Mountains, two of those species present just in Foja, and one present only in the Snow Mountains. The results were as follows.

Among the 42 species shared between Fakfak / Kumawa and Foja, the mean lower altitudinal limit was 230 ± 55 m (mean ± s.d.) lower in Fakfak / Kumawa than in Foja. Of the 42 pairs of values, for 25 species the limit was at least 150 m lower in Fakfak / Kumawa than in Foja; the max. was 1,100 m (for Blue-faced Parrotfinch Erythrura trichroa), a nomadic species whose presence and range depend on the availability of seeding bamboo.

Among the 41 species shared between Fakfak / Kumawa and the Snow Mountains, the mean limit was 488 ± 74 m lower in Fakfak / Kumawa than in the Snow Mountains. Of the 41 pairs of values, for 25 species the limit was at least 300 m lower in Fakfak / Kumawa than in Foja; the max. was 1,545 m (for Chalcites meyerii).

Among 40 species shared between Foja and the Snow Mountains, the mean limit was 269 ± 70 m lower in Foja than in the Snow Mountains. Of the 40 pairs of values, for 28 species the limit was at least 150 m lower in Foja than in the Snow Mountains; the max. was 1,110 m (for Micropsitta bruijnii).

Table 3 illustrates these findings by listing altitudinal limits for nine abundant and conspicuous species with especially well-determined limits in Fakfak / Kumawa, Foja and the Snow Mountains: Ptilinopus bellus, Black-bellied Cuckoo-shrike Edolisoma montanum, Amalocichla incerta, Mountain Mouse-Warbler Crateroscelis robusta, Brown-breasted Gerygone Gerygone ruficollis, Island Leaf-Warbler Phylloscopus poliocephalus, Friendly Fantail Rhipidura albolimbata, Black Monarch Symposiachrus axillaris and Heteromyias albispecularis.
We also include in Table 3 the limits in another portion of the Central Range, Mt. Karimui of eastern New Guinea (Diamond 1972), which lies further from Fakfak / Kumawa and Foja than do the Snow Mountains, but where altitudinal ranges were determined much more precisely than in the latter. As shown in Table 3, altitudinal limits are somewhat lower on Mt. Karimui than in the Snow Mountains, which is consistent with Mt. Karimui being a smaller, lower and more isolated peak of the Central Range than are the Snow Mountains. However, the finding remains that, compared to Mt. Karimui, limits are on average lower in Foja, and even lower in Fakfak / Kumawa.

The Fakfaks and Kumawas are similar in elevation, area and proximity to the coast, so would not be expected to differ in Massenerhebung effects. In fact, of 26 species shared between our Fakfak and North Kumawa transects, all have lower recorded limits in North Kumawa, on average by 225 ± 30 m, a difference as large as that between Fakfak / Kumawa and Foja. We consider that part of the apparent difference between our Fakfak and North Kumawa transects reflects the fact that JD spent much more time at low elevations in the latter than the former, meaning species were much more likely to be detected at low elevations in the Kumawas. However, in addition, eight of the 26 lower limits were for species whose Fakfak limits lay between 690 m and 1,190 m, where JD spent nine days. Hence the higher limits for the Fakfak transect are probably at least partly real. They may reflect either the possibly higher rainfall in Fakfak than in Kumawa (Brookfield & Hart 1966), or else effects of terrain on species’ altitudinal ranges.

Terrain differences.—Between our three Kumawa transects we noted some differences in species distributions, especially between our Central Kumawa transect and the other two, which appeared to be related to differences in terrain. This comparison is limited because of differences in our coverage: we did not descend below 1,026 m in Central Kumawa, JD did not ascend above 938 m in North Kumawa, and below 938 m JD spent 18 days in North Kumawa but only six days in South Kumawa.

Terrain differences were as follows. The North Kumawa transect sloped gently upwards with small undulations, rising 938 m over 11 km, with a mean slope of 8.5%. The South Kumawa transect sloped much more steeply upwards with almost no undulations, rising 1,438 m in 5 km, with a mean slope of 29%. Our Central Kumawa transect descended from 1,654 m to terminate at 1,026 m in a basin encircled by hills, meaning that lowland species ranging up to 1,025 m would occur in the basin only if they reached at least 1,070 m (to cross the surrounding hills). These facts may explain why the well-studied Central Kumawa basin contained more high-altitude species and fewer low-altitude species than were present at comparable well-studied elevations on the other two transects. Five high-altitude species were present in the Central Kumawa basin at elevations 224–372 m below their altitudinal limits on the South Kumawa transect: *Amalocichla incerta*, *Crateroscelis robusta*, *Rhipidura albolimbata*, *Peneothello cryptoleuca* and *Rufous-sided Honeyeater Ptiloprora erythropleura*. Their presence at 1,026 m is unprecedentedly low for all of New Guinea. Fourteen species that were common up to at least 905 m or 938 m in North Kumawa (the elevation at which JD’s transect ended) were absent in the Central Kumawa basin, although three (*Chalcites meyerii*, Hook-billed Kingfisher *Melidora macrorhina* and *Edolisoma incertum*) were recorded up to 1,130–1,438 m in South Kumawa. Further observations are required to establish if these differences are real, but they would be unsurprising: large avifaunal differences resulting from differences in slope are well established for Mt. Karimui (Diamond 1972: 54–55).

Few Kumawa summit species.—Just three Kumawa upland species were observed at Central Kumawa’s Top Camp with lower altitudinal limits above 1,438 m, the highest elevation reached in South Kumawa: *Ptilinopus ornatus*, Josephine’s Lorikeet *Charmosyna*
Josefinae and Sericornis nouhuysi. The probable reason is the small area of the Kumawa summit, such that species confined to the summit and not descending much below it would have a precariously small population size. Similarly, although the summit of the Foja Mountains is at 2,220 m and 12 Foja upland species have lower altitudinal limits between 1,620 m and 1,680 m, none has a lower altitudinal limit above 1,680 m (Beehler et al. 2012).

Upland zoogeography

With the bird populations of which other New Guinea mountains do Fakfak and Kumawa upland bird populations have their closest relationships, as a result of either past ancestry or ongoing gene exchange? There are four potential sources of upland colonists. First, the Arfak and Tamrau Mountains of the Vogelkop Peninsula are large, high (up to 2,900 m) outlying ranges, lying in a straight-line distance c.190 and 280 km north of the Fakfaks and Kumawas, respectively. The 190-km straight-line distance to the Fakfaks includes c.100 km of flat lowlands, plus a 60-km shallow-water gap (MacCluer Gulf) that would have been flat lowlands during the Pleistocene. Secondly, the Bird’s Neck connecting the Vogelkop Peninsula to the Central Range consists of ornithologically unexplored low mountains (up to 1,500 m) c.120 km east of the Kumawas, most of the gap being flat lowlands. Third, the Wandammen Peninsula is a small, high, outlying range (up to 2,250 m) connected to the Bird’s Neck and c.230 km east-northeast of the Fakfak and Kumawa Mountains. Finally, the nearest ornithologically explored high mountains of the Central Range are the Weylands (up to 3,200 m), 260 km east of the Fakfaks and Kumawas.

Large collections of bird specimens are available from the Arfak, Tamrau, Wandammen, and Weyland Mountains. Samples of upland birds available for comparison from the Fakfak and Kumawa Mountains comprise small series of eight species collected by Doherty and discussed by Rothschild & Hartert (1901–15), mist-netted birds from North and South Kumawa examined by JD and released, the few prepared as study skins, JD’s & KDB’s notes on birds observed in the field, and KDB’s field photographs of a few species, in Central Kumawa. These comparisons yield the following conclusions.

Based on current information, Fakfak and Kumawa populations of 17 species are recognisably distinct, of which three have already been described as endemic subspecies (Diamond 1985) and the other 14 are unnamed (see Future studies). Of these 17 species with distinct populations, it is apparent that those of Tropical Scrubwren Sericornis beccarii and Heteromyias albispecularis are more similar to Vogelkop birds than to Weyland birds (and also to Wandammen birds in the case of the former; the latter is absent from Wandammen).

Only some of the remaining species are zoogeographically informative, for either or both of two reasons: Vogelkop, Wandammen and Weyland populations lack recognisable differences, and / or collected specimens are not available for the Fakfak / Kumawa populations or distinctive subspecific characters were not apparent in the field. Those species that did prove informative were as follows.

In four cases (Ralicula leucospila, Amblyornis inornatus, Vogelkop Scrubwren Sericornis rufescens and Vogelkop Melidectes Melidectes leucostephes) the Vogelkop and Weyland populations belong to different allospecies of the same superspecies. In each case the Fakfak and / or Kumawa populations belong to the Vogelkop allospecies, not the Weyland allospecies. Only the first two of these four species are present in Wandammen, both involving the same allospecies as in the Vogelkop.

In two cases (Tregellasia leucops and Diphyllodes magnificus) the Fakfak and / or Kumawa population belongs to the same subspecies as on the Vogelkop but differs from the Wandammen and Weyland subspecies. Zosterops novaeguineae is shared between Fakfak / Kumawa and the Vogelkop, but is absent from Wandammen and Weyland. Finally, the
Fakfak and Kumawa populations of *Ptilinopus ornatus* belong not to the purple-capped race *P. o. ornatus* of the Vogelkop, but to the yellow-capped race *P. o. gestroi* of the Central Range, known from the Snow Mountains eastwards, but not collected in the Weylands.

Thus, of ten zoogeographically informative cases, in nine the Fakfak and Kumawa populations are more similar to those of the Vogelkop (plus in four cases more similar to the Wandammen population) than to Central Range birds from the Weyland Mountains, while in one the closer relationship is with the Central Range. One possible explanation is that the Fakfaks are closer today to the Arfaks than to the Weylands (190 km vs. 260 km, respectively). But this modest difference appears inadequate to explain the preponderance of Arfak affinities. In addition, the straight-line distance comparison is complicated by the differing contributions of flat lowlands, shallow seas and low mountains (1,500 m) to the Arfak and Weyland routes. Therefore, we consider the explanation for the large preponderance of Arfak affinities to be an unresolved question.

Mixed-species foraging flocks

Itinerant mixed-species foraging flocks are conspicuous in New Guinea, as in other parts of the world. Three types of such flocks occur in New Guinea at elevations below 1,525 m (Bell 1983, Diamond 1987b). One, termed the flycatcher / warbler flock, comprises passerines that are insectivorous, small (body mass 7–25 g), often yellowish and / or greenish, and forage in the lower storey and midstorey at 3–9 m. A second flock, termed the brown and black flock, consists of passerine species that are omnivorous, medium-large (50–140 g), brown and / or black, and its members variously forage from the lower storey to the canopy. The third flock, termed the bird wave, combines the first two flocks into a large wave containing dozens of species and up to 100 individuals, and includes a few non-passerines.

All three types of flocks occurred on all four transects. Flocks were commonest in Fakfak and North Kumawa, less common in South Kumawa, and least common and smallest in Central Kumawa. These differences may have resulted partly from altitude, because our observations on the South Kumawa and Central Kumawa transects were mainly at higher altitudes, where flocks are less common. Seasonal differences may also have been a factor, because our four surveys were at different times of year.

The following initial comments are generalisations based on all four transects, to be followed by separate comments for each transect. Each flock has one or more nuclear species, which are the noisiest and most numerous taxa, and lead the flock, with other species following behind. Leaders of the flycatcher / warbler flocks consist (depending on locality) of *Sericornis*, *Gerygone* and *Phylloscopus* warblers, *Rhipidura*, *Monarcha* and *Symposiachrus* flycatchers, and *Pachycephala* whistlers. They may also include *Machaerirhynchus* and *Microeca* flycatchers and the warbler-like Green-backed Honeyeater *Glycichaera fallax*. Each species is represented in the flock by up to three individuals, usually one or two.

Brown and black flocks have four main components. They are led by Papuan Babbler *Garritornis isidorei* at low elevation, plus species of pitohu whose identity varies with altitude (mainly Rusty Pitohui *Pseudorectes ferrugineus*, Northern Variable Pitohui *Pitohui kirhocephalus* and *P. dichrous*, locally White-bellied Pitohui *Pseudorectes incertus* elsewhere in New Guinea, and occasionally Black Pitohui *Melanorectes nigrescens* and Piping Bellbird *Ornorectes cristatus*). A second component is Spangled Drongo *Dicrurus bracteatus* at low elevations and Pygmy Drongo *Chaetorhynchus papuensis* at higher altitudes. A third component is birds of paradise of 15 different species, with up to four species in a given flock. The fourth component is *Coracina* and *Edolisoma* cuckooshrikes of seven different species, with up to three species in a given flock. Brown and black mixed flocks also include
honeyeaters and Little Shrike-Thrush *Colluricincla megarhyncha*. One of the honeyeaters, the rare Tawny Straightbill *Timeliopsis griseigula*, is encountered almost solely in brown and black flocks, which may also be true of *Pseudorectes incertus*. The babbler and pitohui forage at any height from the understory to the canopy, while the birds of paradise and cuckoo-shrikes remain in the crown. Unlike flycatcher/warbler flocks, in which only a few individuals represent each species, the leaders of the brown and black flocks are regularly represented by up to eight individuals.

As their name implies, all species in the brown and black flocks are various shades of brown and/or black. Some are entirely black (the two drongo species, three species of birds of paradise in the genera *Manucodia* and *Phnygammus*, and males of several of the other birds of paradise species, plus Black Cicaadabird *Edolisoma melas* and *Melanorectes nigrescens*). Some species are wholly or almost entirely brown (*Garritornis isidorei*, four pitohui, two honeyeaters, *Colluricincla megarhyncha*, two birds of paradise, and females of nine birds of paradise and *Edolisoma* species). In addition to being confusingly similar in appearance, several flock members mimic each other’s calls. The discovery that several of the leader pitohui species are poisonous suggests a driving force for the evolution of visual and vocal mimicry (Dumbacher *et al*. 1992, 2008).

We now comment on the flocks separately for each of the four transects. In Fakfak, where flocks were common, the leaders of brown and black flocks changed with altitude: *Garritornis isidorei*, *Pseudorectes ferrugineus* and *Pitohui kirhocephalus* below 300 m, *Pseudorectes ferrugineus*, *Pitohui kirhocephalus* and *P. dichrous* at 690–785 m, and *P. dichrous* alone at higher altitudes. Birds of paradise were *Diphyllodes magnificus* and Magnificent Riflebird *Ptiloris magnificus* females, plus *Phonygammus keraudrenii* and Crinkle-collared Manucode *Manucodia chalybatus*. Cuckoo-shrike members were *Edolisoma melas*, Grey-headed Cicaadabird *E. schisticeps*, *E. incertum* and Stout-billed Cuckoo-shrike *Coracina caeruleogrisea*. For flycatcher/warbler flocks at 690–789 m, the nuclear species were Yellowbellied Gerygone *Gerygone chrysogaster*, Chestnut-bellied Fantail *Rhipidura hyperythra* and Frilled Monarch *Arses telescophthalmus*, plus *Phylloscopus poliocephalus*, *Gerygone palpebrosa*, Northern Fantail *Rhipidura rufiventris*, Rufous-backed Fantail *R. rufidorsa*, Spot-winged Monarch *Symposiachrus guttula*, Black-winged Monarch *Monarcha frater*, Golden Monarch *Carterornis chrysomela*, *Pachycephala flavogrisea* and Grey Whistler *Pachycephala simplex*.

In North Kumawa, where flocks were also common, leadership of the brown and black flocks changed with altitude in the same succession as in Fakfak. Lesser Bird of Paradise *Paradisaea minor* (both sexes) joined brown and black flocks in North Kumawa but not in Fakfak. Both of our only observations of the rare *Timeliopsis griseigula* in North Kumawa were in brown and black flocks, as was Rheindt’s only observation in Fakfak.

In South Kumawa, where JD observed fewer mixed flocks, changes with altitude were striking. At low elevation the brown and black flocks were led by *Pitohui kirhocephalus* and *Pseudorectes ferrugineus*, followed by *Dicrurus bracteatus*, while flycatcher/warbler flocks were led by *Gerygone chrysogaster*, *Rhipidura rufidorsa*, *R. hyperythra*, *Arses telescophthalmus*, Yellow-breasted Boabbill *Machaerirhynchus flavigener* and *Pachycephala simplex*, and joined by *Rhipidura rufiventris* and *Symposiachrus guttula*. At 1,055 m, leaders of flycatcher/warbler flocks were *Sericornis rufescens*, *S. beccarii*, *Symposiarchus axillaris* and *Pachycephala soror*, joined by *Monarcha frater*. Above 1,400 m the nuclear species was Regent Whistler *P. schlegelii*, which several times per minute gave songs shorter and weaker than full dawn songs; other vocalists were *Sericornis rufescens*, *Rhipidura albolimbata* and Black Fantail *R. atra*. There were no brown and black flocks at such high altitudes, because the last potential leader, *Pitohui dichrous*, reached its altitudinal ceiling at 1,260 m, and the high-altitude pitohui *Melanorectes nigrescens* joins flocks only infrequently.
Finally, in Central Kumawa the brown and black flocks at 1,026–1,210 m were few and small, led by *Pitohui dichrous* and joined by *Pseudorectes ferrugineus*, *Ptiloris magnificus*, *Edolisoma montanum* and *Pachycephala soror*. Flycatcher / warbler flocks were more frequent and included three *Sericornis* species (*S. beccarii*, *S. virgatus*, *S. spilodera*), *Phylloscopus poliocephalus*, *Rhipidura albolimbata*, *Pachycephala soror*, *Chaetorhynchus papuensis* and Spectacled Longbill *Oedistoma iliolophus*. A single large bird wave included most of the flycatchers and warblers, plus several brown and black flock members (*Pitohui dichrous*, Black-billed Sicklebill *Drepanornis albertisi* and female *Diphyllodes magnificus*), plus Mid-mountain Berrypecker *Melanocharis longicauda*.

Local names

Ornithologists conducting field work in New Guinea find it of enormous value to learn local language names for individual bird species. With those names, visiting ornithologists can ask local guides to point out particular species and identify songs, and can tap into the encyclopedic knowledge of bird habits and life histories that New Guineans have accumulated. Approximately 1,000 different local languages are spoken in New Guinea, each with its own set of bird names.

Column 5 of the Appendix provides local names for bird species in two forms of the Baham language: as spoken in the Fakfaks, and as spoken at Nusawulan village at the base of the Kumawas. Emigrants from Fakfak founded Nusawulan about three generations before JD was given those names by local informants in 1983. Comparison of the two lists reveals that, of 28 species for which names are available in both dialects, 21 names are the same or very similar, while seven are different, perhaps because they have changed in the course of three generations. When Doherty was collecting in the Fakfak area in 1896, he recorded one local bird name, ‘lusii’, for White-bellied Sea-Eagle *Haliaeetus leucogaster* (Rothschild & Hartert 1901: 57); JD was given the same name for that eagle in 1983.

As the Appendix demonstrates, most local names refer to a single species. However, in seven cases the same name refers to two or more similar species that Western ornithologists also find difficult to distinguish: ‘sikeké’ is used for four waders, ‘kananáwa’ for three terns, ‘wihía’ for two *Ptilinopus* fruit-doves, ‘uríyási’ for three *Coracina* cuckooshrikes, ‘sísí’ for four small passerines (two *Sericornis* and two sunbird species), ‘síhánut’ for two *Rhipidura* fantails and ‘wassí’ for two pitohui species. Less obviously, ‘sororó’ refers to both the black Shining Flycatcher *Myiagra alecto* and Banded Yellow Robin *Gennaeodryas placens*, because Baham informants found the nasal calls of these two species as confusingly similar in the field as did JD. The name ‘totókweras’ is applied by Nusawulan villagers both to the brownish *Pitohui kirhocephalus* of hill forests and the olive, grey and whitish Varied Honeyeater *Gavicalis versicolor* on offshore small islands—not because villagers are in any doubt about the distinctness of the two species, but because both have loud bubbly songs.

As for etymologies of the names, a few are onomatopoietic renditions of the bird’s vocalisation, such as ‘kuwók-kuwók’ for Brown Cuckoo-Dove *Macropygia amboinensis* and ‘kowok’ for Helmeted Friarbird *Philemon buceroides*. However, most names do not have obvious etymologies that we can recognise.

The Appendix also provides six and 75 unidentified Baham names that informants at Nusawulan and in the Fakfak area, respectively, provided to JD. These names were applied to birds that the informants described, or to unidentified vocalisations heard in the field. They may help future observers to be guided in the field to some species that we did not succeed in observing ourselves.

© 2015 The Authors; Journal compilation © 2015 British Ornithologists’ Club
Future studies

We conclude by calling attention to four sets of problems whose resolution will require more field work in the Fakfaks and Kumawas. First, there are at least 14 species of which Fakfak and / or Kumawa populations are evidently morphologically distinct but have not been named. Preliminary diagnoses based on field observations, photographs (Figs. 3–7) or mist-netted individuals are provided herein or by Diamond (1985). Collection of specimens (or of more specimens) is required before they can be assessed and described. Most distinct is the Fakfak and Kumawa population of, or related to, Melanocharis longicauda, diagnosed below. The others (Fakfak and Kumawa populations, respectively, abbreviated F and K in parentheses) are Rallicula leucospila (K: Fig. 3), Amalocichla incerta (K), Chestnut-backed Jewel-Babbler Ptilorhoa castanonota (F, K: Fig. 6), Crateroscelis robusta (F, K: Fig. 5), Sericornis beccarii (F, K), Heteromyias albispecularis (K: Fig. 7), Pachycephala schlegelii (F, K), P. soror (F), Drepanornis albertisi (F, K), Melidectes leucostephes (F, K), Mountain Meliphaga Meliphaga orientalis (F, K), Ptilopora erythropleura (F, K) and Zosterops novaeguineae (K).

Second, of the three populations of Kumawa birds already described as endemic subspecies (Diamond 1985), two pose uncertainties as to their true taxonomic assignment. The Kumawa population of the common mid-elevation whistler has been named Pachycephala soror octogenarii, but it is so distinctive compared to other populations of P. soror that its status as a separate species should be reconsidered. The whistler’s Fakfak population, still uncollections, appeared in the field to be not identical to the Fakfak birds (see below). Melipotes honeyeaters are currently considered a superspecies with four allospecies (Common Smoky Honeyeater M. fumigatus of the Central Range and two outliers, Western Smoky Honeyeater M. gymnops of the Arfak, Tamrau and Wandammen outliers, Spangled Honeyeater M. ater of the Huon outlier, and Wattled Smoky Honeyeater M. carolea of the Foja outlier). The Kumawa population of the distinctive Melipotes populations of Fakfak and Kumawa, collected in 1983, was named M. fumigatus kumawa based on two specimens. However, field observations and photographs (see Fig. 4) that we made in Central Kumawa in 2013 suggest that the population is more distinctive in its face wattles and plumage than previously appreciated, and approaches M. gymnops and M. carolea in some characters, so that its species allocation is now uncertain.

Third, the identification of seven populations or pairs of populations observed in the field is uncertain: the mountain cassowaries of both Fakfak and Kumawa (Dwarf Cassowary Casuarius bennetti or lowland Southern Cassowary C. casuarius?), the Talegalla allospecies of Fakfak and Kumawa (Yellow-legged Brushturkey T. fuscicrostris or Red-billed Brushturkey T. cuvieri?), the marsh crake of Central Kumawa’s Marsh Camp, the Fakfak Sericornis identified in the field as S. arfakianus (but perhaps S. rufescens as in Kumawa?), the Fakfak Peneothello population that Gibbs (1994) identified as Blue-grey Robin P. cyanus (but possibly P. cryptoleuca as in Kumawa?), the two Fakfak birds that Gibbs identified as being the bird of paradise genus Paradigalla (which would be surprising), and the Fakfak berrypecker identified as Melanocharis striativentris (but perhaps female M. longicauda?).

Finally, Tables 1–2 list upland species not yet recorded in one or both Fakfak and Kumawa, but which might be considered plausible candidates to be present, based on their overall geographic and altitudinal ranges. Which really are absent and which are present but have so far been overlooked? Of these absences, those that we consider most likely to be present are (Table 1) Alopecoenas beccarii, Aegotheles albertisi, A. insignis, Coracina lineata, Zoothera heinei and Zosterops novaeguineae in the Fakfaks; (Table 1) Myzomela cruentata and Xanthotis polygrammus in the Kumawas; and (Table 2) Aegotheles wallacii, Monachella muelleriana and Grallina bruijini in both ranges.
Species accounts

CASSOWARIES *Casuarius* sp.
We frequently saw piles of cassowary droppings and occasionally heard cassowaries up to between 915 m and 1,250 m in both ranges. Two brief sightings, plus descriptions by local people, were insufficient to identify if our observations referred to just one or both of the two regional cassowaries (Southern *C. casuarius* and Dwarf Cassowaries *C. bennetti*). Gibbs and Rheindt both identified only the former.

WATTLED BRUSHTURKEY *Aepypodius arfakianus*
A total of eight mounds, one containing > 20 rotting eggs, at higher elevations in both ranges.

BRUSHTURKEYS *Talegalla* sp.
We heard upslurred and constant-pitch *Talegalla* calls on three of our four transects. Calls that JD heard in Fakfak resembled a donkey’s braying in quality and differed from calls of Fly River Yellow-legged Brushturkey *T. fuscirostris* and north-coast Red-legged Brushturkey *T. jobiensis* with which JD is familiar, suggesting they belonged to *T. cuvieri*. However, Rheindt identified one *Talegalla* that he saw in Fakfak as *T. fuscirostris* based on soft-part colours. Kumawa calls were hoarse upslurred honks similar to calls of *T. fuscirostris* and *T. jobiensis*. The only individual that we saw, in Kumawa, had yellow legs and a grey rather than yellowish-olive bare face, also suggesting *T. fuscirostris* rather than *T. cuvieri*. Thus, there remains uncertainty as to the *Talegalla* species involved.

PACIFIC BLACK DUCK *Anas superciliosa*
Up to 32 around the pond at Kumawa Marsh Camp. Numbers increased when the pond level rose after rains. Also observed by R. Sneider at another nearby marsh that he visited by helicopter.

TRICOLOURED GREBE *Tachybaptus tricolor*
One or two in breeding plumage on the pond at Kumawa Marsh Camp on three days.

MEYER’S GOSHAWK *Accipiter cf. meyerianus*
We once saw a notably large, slender-tailed accipiter, presumably this species, soaring over Kumawa Marsh Camp.

GURNEY’S EAGLE *Aquila gurneyi*
One adult displaying and then hunting over forest surrounding Kumawa Marsh Camp.

WHITE-STRIPED FOREST-RAIL *Rallia leucospila*
This little-known rail had previously been recorded only from the Tamrau, Arfak and Wandammen Mountains, north of Fakfak. Its discovery to the south in Kumawa, but not in the intervening Fakfaks, and the identification of its remarkable call, were among our most interesting results (Fig. 3). Frequently heard and seen from c.1,020 m up to the highest elevations on both of our upper Kumawa transects, but neither heard nor seen in Fakfak. Walking on the forest floor as male/female pairs, or singles, or two separated individuals counter-singing. The presumed male is deep chestnut-red over the entire body, but the back and wings are black with fine whitish streaks. The presumed female is similar but
has indistinct barring on the tail and posterior flanks. Bill and legs are dark. The Kumawa population appears to differ from the nominate Vogelkop race in the male’s unbarred tail. Of the three vocalisations, the simplest is a single, quiet, short, pig-like grunt. The second vocalisation, which we did not prove belongs to this species, is a series of 5–12 loud short grunts at intervals of 1.0–1.5 seconds, all on the same pitch, but with a distinctive change in quality as it proceeds (initially frog-like, then progressively hoarser and more like a dog’s bark). For the longest and most remarkable call, our Papuan colleagues and JD were initially uncertain whether it was made by a distant large beast or a nearby frog, snake or marsupial. The quality suggests a frog or an unpleasant electronic device, rather than a bird. It commences with a long, fast, ascending, accelerating series of notes, concluding in many rapid sets of notes of which the first note of each set is two whole tones lower in pitch, followed by 2–5 identical notes at the upper pitch, with unpredictable variation between them. One bird, not a duetting pair, gives the entire call. Singers approached us in response to playback.

CRAKE
Once KDB briefly saw a small black crake flutter across a stream in the marsh at Kumawa Marsh Camp. It could have been a juvenile of any of several species. Habitat makes *Rallicula leucospila* unlikely.

ORNATE FRUIT-DOVE *Ptilinopus ornatus*
One of only three species (the others were Large Scrubwren *Sericornis nouhuysi* and Josephine’s Lorikeet *Charmosyna josefinae*) that we found confined to the highest Kumawa elevations above 1,500 m. But Doherty, Gibbs and Rheindt all found it at lower elevations in Fakfak, as throughout New Guinea it breeds at higher elevations then moves in post-breeding flocks to lower elevations. Like those Fakfak birds observed or collected by others, Kumawa birds belong to the widespread yellow-capped race *P. o. gestroi* rather than to the purple-capped Vogelkop race *P. o. ornatus*.

CORONETED FRUIT-DOVE *Ptilinopus coronulatus*
In both Fakfak and Kumawa. Like many other *Ptilinopus*, its call is a series of *hoo* notes that at first rises slightly and then descends in pitch. However, the *hoo* series of *P. coronulatus* is easily distinguished because it accelerates greatly (more than in any other *Ptilinopus* known to us) and is high-pitched.

CLARET-BREASTED FRUIT-DOVE *Ptilinopus viridis*
A common montane species in both Fakfak and Kumawa, absent from the lowlands. It has a curious distribution on the New Guinea mainland: the species is unknown in the Central Range but occurs on all outlying ranges proceeding counterclockwise along the coast from the easternmost peak of the North Coastal Range (Prince Alexander Mountains) west to the Vogelkop and south to the Fakfaks and Kumawas. The sole possible exception is an 1828 record by S. Müller from Lobo on Triton Bay, just east of the Kumawas.

ELEGANT IMPERIAL PIGEON *Ducula concinna*
The sole New Guinea mainland records of this supertramp (small-island specialist) are several individuals that JD observed on the south coast of the Kumawas in September 1983 (Diamond 1985).
LORIKEETS Charmosyna spp.
We identified both C. josefinae and Little Red Lorikeet C. pulchella in Fakfak and Kumawa. In both ranges we also heard and saw small lorikeets, either Red-flanked Lorikeet C. placensis and / or the very similar Red-fronted Lorikeet C. rubronotata, which we succeeded in identifying only once: C. placensis at 635 m in Fakfak. It remains an open question whether C. rubronotata also occurs in Fakfak, and which (or both) of these two small lorikeets occurs in Kumawa.

LARGE FIG-PARROT Psittaculirostris desmarestii
Calls similar to those of the closely related Salvadori’s Fig-Parrot P. salvadorii, and stronger than those of the small Charmosyna lorikeets were heard: sucked-in and squeaky, reminiscent of the sound of a triphammer, with a sharp start and sharp finish (i.e., staccato).

RED-BREASTED PYGMY PARROT Micropsitta bruijnii
Notably common in Central Kumawa, where we located six active nests each attended by an adult male and female, and in some cases 1–2 immatures. Nests were holes 2–3 m above ground in standing and rotting trees, three nests each near Top Camp and near Marsh Camp. We once encountered a flock of 10–20 foraging in the lower canopy.

RED-CHEEKED PARROT Geoffroyus geoffroyi
Throughout New Guinea this species’ call consists of a loud ringing series of equal-spaced notes on the same pitch, with a metallic quality like a hammer striking an anvil. The Kumawa dialect is distinctive in that the series decelerates markedly and descends slightly in pitch.

MOLUCCAN KING-PARROT Alisterus amboinensis
This species of far-western New Guinea and the Moluccas has three quite different calls. (1) A series of 4–12 piercing and very high-pitched upslurs at a rate of one per second; the whole series descends, or the first note is at a lower pitch than the second, or the first three notes descend, then the fourth note returns to the same pitch as the first, before the series descends again. (2) A loud nasal note, much like the sound of someone striking wood with an axe. (3) A fairly loud, short, staccato, unmusical note with the quality of two sticks being rubbed together. The related Papuan King-Parrot A. chloropterus of central and east New Guinea utters calls very similar to the first two of these, but we have not heard it give a call similar to the third.

RUFOUS-THROATED BRONZE CUCKOO Chalcites ruficollis
On the mornings of 26 March and 27 March 2013 at our Kumawa Marsh Camp (1,026 m), KDB saw well and tape-recorded a pair foraging in the forest canopy. This observation was surprising, because the species is known elsewhere from above 1,280 m, mainly above 1,800 m, whereas the common New Guinea Chalcites at 1,000 m is C. meyeri; JD saw and heard White-eared Bronze Cuckoo C. meyerii at or near this elevation on his North and South Kumawa transects in 1983, and Doherty and Gibbs, respectively, collected and saw C. meyerii in the Fakfaks. However, there is no doubt that KDB’s observation involved C. ruficollis, as the pair had the chin, throat and breast very rich rufous or russet (rather than clean white as in C. meyerii) and well-marked bars on the white belly posterior to the rufous. His tape-recordings involve a series of eight identical, very high-pitched, somewhat drawn-out notes, rather than short downslurs, delivered at the rate of 1.6 notes per second, with no change in pitch and rate over the series. KDB’s recording agrees with S. Connop’s of the
song of *C. ruficollis*. The song of *C. meyerii*, which we have often heard elsewhere, differs in being lower pitched, slower (one note per second), with a distinctive deceleration and drop in pitch over the last two notes. We did not hear or see *C. meyerii* at Marsh Camp.

OWLET-NIGHTJARS *Aegotheles* spp.

On five nights at our Kumawa Marsh Camp we heard the unmistakable hoarse three-note ascending call of Feline Owlet-Nightjar *A. insignis*. JD mist-netted a Mountain Owlet-Nightjar *A. albertisi* at his highest camp (1,390 m) in South Kumawa (Diamond 1985). On six nights at our Kumawa Top Camp and Marsh Camp, we heard the presumed call of *A. albertisi*: a soft, staccato, slightly upslurred, medium to high-pitched note, repeated *ad nauseam* at the rate of one note per second, with a quality resembling a small dog or Sugar Glider *Petaurus breviceps*. At 180 m in forest in North Kumawa, JD observed a dull grey-brown aegothelid day-roosting on a branch; he noted fine white spots on the back and wings, 8–12 narrow white bands on the tail and no collar, characteristics compatible with either Wallace’s *A. wallacii* or Barred Owlet-Nightjars *A. bennettii*, but not with *A. insignis* or *A. albertisi*.

MOUNTAIN SWIFTLET *Aerodramus hirundinaceus*

One mist-netted (feathered upper tarsus) at 1097 m in South Kumawa. In Fakfak the brown swiftlets at high elevations had whitish underparts, while those at low elevation over Fakfak town had brownish underparts, suggesting that the former were *A. hirundinaceus* and the latter were Uniform Swiftlet *A. vanikorensis*.

VOGELKOP BOWERBIRD *Amblyornis inornata*

The three previously known populations of this bowerbird, in the Arfak, Tamrau and Wandammen Mountains, are famous for their bowers of stick ‘huts’ up to 2 m in diameter and 1.5 m tall, extensively decorated with fruits, flowers, fungi, butterfly wings, beetle elytrae, sticks, stones, leaves, acorns, eggshells and resins (in red, pink, orange, yellow, green, blue, purple, black, brown, grey and white) (Gilliard 1969, Frith & Frith 2004). The Fakfak bowers reported to JD by natives in 1981 and subsequently observed by Gibbs (1994), Uy & Borgia (2000) and Rheindt (2012), and the Kumawa bowers that JD discovered in 1981 (Diamond 1985, 1986, 1987a, 1988), differ drastically in comprising a tower of sticks up to 2.4 m tall, standing on a black moss platform up to 1.8 m in diameter, and (with one exception mentioned below) decorated only with black, white, grey and brown objects. Because of these large differences in bower style, Gibbs (1994) concluded that the Fakfak / Kumawa populations could not be conspecific with Arfak / Tamrau / Wandammen populations. However, the two populations are nearly identical morphologically (Diamond 1985) and differ genetically by only 0.5% (Uy & Borgia 2000). Bower-building by male bowerbirds, and mate selection on the basis of bower design by female bowerbirds, appear to be cultural traits involving learning in both sexes (Diamond 1986).

Our 2013 observations extend this conclusion by adding evidence of geographic variation in bower style over small distances within the same range. Bowers that F. Sadsuitubun observed in Kumawa in 1975, c.8 km by air from JD’s 1983 South Kumawa transect, differed from the latter bowers in being decorated with fruits of four colours, much more often decorated with white stones, and having dark stones scattered over the mat rather than assembled in a pile (Diamond 1987a). The eight bowers that JD & KDB observed in their 2013 Central Kumawa transect between 1,026 and 1,654 m, c.11 km from JD’s South Kumawa transect, differed in that two were decorated with a neatly rectangular row, 1.2 m long by 13 cm wide, of 5-cm pieces of buff-colored clay (Fig. 2). These eight bowers
consisted of 1–2 towers of sticks up to 1.5 m tall, glued together with an unidentified white substance around a sapling, on a circular moss mat 0.9–2.1 m in diameter. Decorations besides the clay rectangle were *Pandanus* leaves propped against the stick tower, pale snail shells, black beetle elytrae, grey or buff stones, long thin black sticks, whitish limestone and black palm seeds. Gilliard (1969) and Gilliard & LeCroy (1970) previously noted wide individual variation in Tamrau bowers, similar to our observation of individual variation in the presence or absence of a clay rectangle in Central Kumawa bowers.

As had Diamond (1986, 1988) in South Kumawa and Wandammen, and Uy & Borgia (2000) in Fakfak and Arfak, JD & KDB in 2013 in Central Kumawa placed coloured poker chips at bowers to test whether the absence of coloured natural decorations at Central Kumawa bowers reflects a lack of available natural objects in the environment, or instead the birds’ preferences. Confirming the latter interpretation, when we placed poker chips on two of the bowers—chips uniformly coloured red, orange, yellow, blue, purple or violet, and green, blue or black chips with white spots—most or all of them disappeared, presumably discarded by the bower-owner. Similarly, South Kumawa bower-owners, which do not use coloured natural decorations, discarded coloured poker chips placed at their bowers, while Wandammen bower-owners, which do use coloured natural decorations, used coloured poker chips placed nearby to decorate their bowers (see Fig. 2 in Diamond 1986).

BROAD-BILLED FAIRYWREN *Chenorhamphus grayi*

Our only records of this very uncommon, sparsely distributed species were two observations in North Kumawa (Le Croy & Diamond 1995).

WHITE-SHOULDERED FAIRYWREN *Malurus alboscapulatus*

The sole known population in Fakfak and Kumawa was in the marsh grass at our Kumawa Marsh Camp, where it was by far the most abundant species, usually in groups of up to four. Populations fall into three groups, of which two have checkerboard distributions (Rand & Gilliard 1967). The Kumawa population belongs to the first of the three groups (races *aida*, *moretoni* and *randi*, from the north-west New Guinea lowlands, south-east lowlands and Wissel Lake, respectively) in being sexually monomorphic (all presumed adults black with white scapular patches). Presumed young birds (occasional individuals begging) were brownish black rather than black, with a white throat and variable blotchy white on the rest of the underparts.

RUFOUS-SIDED HONEYEATER *Ptiloprora erythropleura*

Abundant at high elevations in both Fakfak and Kumawa, mainly in the midstorey and lower canopy, and frequenting flowering trees. Fakfak and Kumawa birds resemble *P. e. dammermanni* of the Central Range in the green irides (red in nominate *P. e. erythropleura* of Arfak and Tamrau) but differ in the yellow-olive ventral wash. The flanks were rufous in some but apparently not all individuals we saw, and not in Fakfak birds observed by Gibbs. The high-pitched plaintive call, monotonously repeated every 3–6 seconds, is usually a single slurred note (upslurred, or downslurred, or slurred up then down, or vice versa) as in other *Ptiloprora* species. But some calls, unusually for the genus *Ptiloprora*, had a two-note or three-note pattern, and were high, plaintive and monotonously repeated.

SMOKY HONEYEATERS *Melipotes* sp.

In Fakfak seen three times by JD, seen by Gibbs, and briefly observed once by Rheindt. In South Kumawa JD saw eight individuals and mist-netted four, of which two were collected and described as *M. fumigatus kumawa* (Diamond 1985). In Central Kumawa JD & KDB saw
it daily at Top Camp, where KDB photographed one (Fig. 4). Always solitary and silent, foraging from the lower storey to the canopy, in flowering trees, and eating catkins and insects on leaves.

Populations of the upland genus *Melipotes* are currently divided into four allospecies: Common Smoky Honeyeater *M. fumigatus* of the Central Range and two outlying ranges (Cyclops and North Coastal Range), and three allospecies confined to outlying ranges in the northern watershed (Wattled Smoky Honeyeater *M. carolae* of the Foja Mountains, Western Smoky Honeyeater *M. gymnops* of Arfak, Tamrau and Wandammen, and the sociable, noisy, much larger Spangled Honeyeater *M. ater* of the Huon Peninsula). In plumage *M. f. kumawa* is closer to the widespread *M. f. fumigatus* than to *M. gymnops* or *M. ater*. *M. f. kumawa* differs from *M. f. fumigatus* in the alternating blackish and white, bold curved marks on the lower breast and belly, the white rather than indistinctly grey-tipped upperwing-coverts, the more extensive and whiter pale area on the underwing linings, and the blackish rather than pale grey chin and throat. In life the head wattles are yellow or deep yellow tending to orange, and are divided on each side into a face wattle and almost separate throat wattle obvious in Fig. 4. In wattle form Kumawa birds resemble *M. carolae* of the Foja Mountains (compare Fig. 2a in Beehler *et al.* 2007), which also approaches or resembles *M. f. kumawa* in its dark throat but differs in its deep red-orange wattles. More specimens are required to clarify relationships between Fakfak, Kumawa and Foja *Melipotes*, and to clarify species limits within the genus *Melipotes*.

TAWNY STRAIGHTBILL *Timeliopsis griseigula*

This rare honeyeater was observed twice by JD in North Kumawa (1985) and once by Rheindt in Fakfak. All three observations were within mixed-species flocks of brown and black birds, including several almost uniformly brown species very similar to *T. griseigula*, which is best distinguished by its hyper-nervous behaviour involving rapid movements with few and brief pauses, flaring its tail, and hanging upside-down to probe leaves.

VOGELKOP MELIDECTES *Melidectes leucostephes*

At higher elevations in Fakfak and Kumawa; previously known only from Arfak and Tamrau. In life Kumawa birds have the bare facial skin bluish white, the small throat wattles red and the bill pale. We found the Kumawa population uncommon, compared to the abundance of most other *Melidectes* species in other ranges. Vocalisations included some typical loud *Melidectes* calls, especially a series of short, medium-high, harsh or nasal upslurred or downslurred caws given at a rate of three per second. A distinctive call heard only at dusk is a rapid stereotyped series of four downslurs, the first on a lower pitch, the second and third higher, and fourth at middle pitch. Even more distinctive is a loud stereotyped duet: one individual gives a rapid series of seven notes, the first upslurred, the next six distributed over three lower pitches, while the other individual utters small clucks and a staccato series of identical pairs of notes, the second note of each pair louder and longer, and at a lower pitch than the first note.

WHITE-EARED MELIPHAGA *Meliphaga montana*

A shy forest interior species of the lower canopy at heights of 5–12 m, alone or in pairs, often joining mixed flocks. Readily distinguished from other meliphagas by two features: its call, a short upslurred *wheep*, and its loud wingbeats. Plumage is dull and dark, the underparts obscurely spotted, the rictal streak white, and the ear-coverts white in adults and soiled pale yellowish in immatures. In Fakfak Rheindt saw two and Doherty collected one.
MOUNTAIN MELIPHAGA *Meliphaga orientalis*

Abundant in Fakfak and Kumawa above the altitudinal ranges of all closely related species of *Meliphaga*. Compared to other populations of *M. orientalis*, Fakfak and Kumawa birds are large-bodied, the yellow ear patch is small, and the ventral streaks or spots obscure. There are three calls, of which the first two enable one (with practice) to distinguish this species.
from its very similar low-elevation relative Mimic Meliphaga *M. analoga*: a snapped, short, upslurred or downslurred disyllable (*M. analoga*’s disyllables are much louder and lack the snapped quality); a short, musical *tp* contrasting with the strong staccato *tp* note of *M. analoga*; and a piping, querulous, fussing series of *c.7* notes, the first one on a lower pitch. In addition to *M. albonotata*, *M. montana* and *M. orientalis*, the other species in the *M. analoga* complex that we observed were *M. analoga* at low elevations with a single observation of Puff-backed Meliphaga *M. aruensis* in Fakfak, while Rheindt observed Yellow-gaped Meliphaga *M. flavirictus* in a fruiting tree in Fakfak.

SCRUB MELIPHAGA *Meliphaga albonotata*

Two individuals on two different days in 6 m-tall second growth within 30 m of the beach in North Kumawa gave two of this species’ calls: a bright downslurred disyllable repeated three times, and a staccato note *tp*. In Fakfak Rheindt observed one and Doherty collected one.

GOLDENFACE *Pachycare flavogriseum*

Abundant at 787–1,209 m, and giving fragmentary songs, on JD’s Fakfak transect, but not encountered by Gibbs or Rheindt. The underparts of the Fakfak population are yellow in life, and not at all orange as are the populations of the Foja Mountains and the western Central Range, whose orange colour gradually fades to yellow with time in specimens (Rand 1942: 487, Diamond 1972: 273).

MOUNTAIN MOUSE-WARBLER *Crateroscelis robusta*

The Kumawa population (Fig. 5) does not resemble its geographically closest relatives, the sexually monomorphic races of the Arfak and Tamrau Mountains, and of the western Central Range. Instead, it recalls the more distant sexually dimorphic *C. r. robusta* of the eastern Central Range, from which both male and female plumages differ in colour traits (Diamond 1985). In many parts of New Guinea *C. robusta* and its lowland relative Rusty Mouse-Warbler *C. murina* have altitudinal ranges that are mutually exclusive (Diamond 1972). However, in Central Kumawa their altitudinal ranges overlapped by at least 80 m, and we observed the two species within 100 horizontal metres of each other.

PALE-BILLED SCRUBWREN *Sericornis spilodera*

The song is a weak, slow, long, very high-pitched series of separate notes, alternating between higher and lower pitches like a faint, distant police siren, all within half an octave in pitch, repeated constantly at a rate of 1.2 notes per second.

TROPICAL SCRUBWREN *Sericornis beccarii*

Populations vary irregularly with respect to geography. Some are strongly patterned with whitish lores, forehead, throat and upperwing-covert tips, while others are drab with these markings reduced or virtually absent (Diamond 1969, 1985). The Fakfak and Kumawa populations are among the duller ones: the lores are unmarked and upperwing-coverts have only obscure pale tips, visible in the hand but usually invisible in the field. But all eight of the populations that JD has encountered (North Coastal Range, Cyclops Mountains, Yapen Island, Foja Mountains, Van Rees Mountains, Wandammen, Fakfak and Kumawa), including strongly patterned as well as virtually unpattered populations, share similar, *Gerygone*-like, fast, light, high-pitched songs comprising a rapidly repeated three-note phrase.
LARGE SCRUBWREN *Sericornis nouhuysi*

Along with *Ptilinopus ornatus* and *Charmosyna josefinae*, this is the third Kumawa species confined to the highest elevations around our Top Camp. KDB saw and tape-recorded a singing pair and lone individual on 14–15 March 2013, foraging at heights of 6–10 m. Compared to *S. rufescens* at the same elevation and *S. virgatus* at lower elevations, this is a larger, heavier, larger billed bird. Like elsewhere in New Guinea, the song in Kumawa is a *Gerygone*-like three-note phrase repeated at a rate of 1.5–1.6 phrases per second, similar to *S. virgatus* but lighter, less energetic, clearer, sweeter and possibly higher pitched.

VOGELKOP SCRUBWREN *Sericornis rufescens*

The most abundant bird species at high elevations in Kumawa, otherwise known with certainty only from the Arfak and Tamrau Mountains, and possibly also in Fakfak (see below). Seven were mist-netted in Kumawa and examined closely. The overall impression is of a very small dingy nondescript bird, predominantly dirty olive rather than brown. The only distinctive feature is the dark eye that is obvious in the pale face, pale buffy or buffy-orange around the eye. The back is dull olive, the tail brown or has an obscure dark subterminal spot. The underparts are paler than the upperparts, pale dull buff slightly yellowish and streaky. The bill is small compared to *S. beccarii* (see below), which shares the same habitats. In habits, this species is a leaf-gleaner, mainly foraging below 5 m, occasionally up to 18 m, often several together and occasionally in mixed-species flocks. The call is a dry *chip* similar to Buff-faced Scrubwren *S. perspicillatus*. The song, heard mainly at dawn, is weak but vigorous, moderately fast, medium-high in pitch, with a slightly sibilant, unclear, unmusical quality. Each song comprises several types of phrases, each consisting of several notes, and each phrase repeated several times before going on to the next phrase. One such song is repeated several times at intervals of several seconds before switching to another pattern.

GREY-GREEN SCRUBWREN *Sericornis arfakianus?*

At high elevations in Fakfak in 1981, JD found to be abundant a small, dingy, nondescript *Sericornis* that he identified as *S. arfakianus*, with which he was previously familiar. At the time he had never encountered *S. rufescens*. Gibbs (1994) also reported seeing *S. arfakianus* daily at high elevations in Fakfak. But JD’s field notes on the appearance of the small Fakfak *Sericornis* are similar to his notes on *S. rufescens*, which he encountered for the first time two years later in Kumawa. In retrospect, we are uncertain whether the common small *Sericornis* at high elevations in Fakfak is *S. arfakianus* or *S. rufescens*.

MID-MOUNTAIN BERRYPECKER *Melanocharis longicauda*

The Kumawa population observed by us, and evidently the Fakfak population seen by Gibbs, belong to a strikingly distinct undescribed subspecies or allospecies, characterised by the adult male’s nearly white underparts (rather than yellowish olive-grey as in all other populations). The male has blue-black upperparts, white axillaries and white outer tail feathers. The female has olive upperparts and pale, slightly yellowish, obscurely streaky underparts, rather like the Fakfak berrypeckers that we provisionally identified as Streaked Berrypecker *M. striativentris* except for lacking an orange gape or rictal streak. Fairly common up to 9 m above ground (six individuals mist-netted, none collected) and joins mixed-species flocks. On 17 November 2014, at 1,200 m, B. Milà & C. Thébaud (*in litt.* 2015) mist-netted and collected an adult male similar overall to the birds that we observed.
STREAKED BERRYPECKER *Melanocharis striativentris*?

Seen twice by JD at 1,170 m in Fakfak, 5 m and 12 m above ground, consuming tiny berries. The diagnostic orange gape or rictal streak suggests this species rather than female *M. longicauda* (see below). The small bill was black, the upperparts and head olive, the underparts streaky yellow-olive or dirty lemon, and the tail was of mid length.

BLUE JEWEL-BABBLER *Ptilorrhoa caerulescens*

In addition to very high-pitched faint clear notes at constant pitch, Kumawa and Fakfak birds share with north-west New Guinea populations a remarkable, loud, fast, dry, even-pitch, utterly unmusical rattle that reaches a crescendo.

CHESTNUT-BACKED JEWEL-BABBLER *Ptilorrhoa castanonota*

The call is a loud, quickly repeated *chew-chew*, deceptively similar to the call of Sooty Thicket-Fantail *Rhipidura threnothorax*, except that the latter always gives three *chew* notes, while the jewel-babbler gives its *chew* note once, twice or four times, but never thrice. Perhaps the jewel-babbler avoids three-note calls to avoid confusion with the fantail. The Kumawa population (Fig. 6) may prove to be subspecifically distinct (Diamond 1985).

BARRED CUCKOOSHRIKE *Coracina lineata*

Heard and seen calling once in North Kumawa, and heard once in South Kumawa. The call is a loud, high-pitched, piercing, sweet downsrl, uttered once or twice in succession, and given either perched or in flight.

PAPUAN CICADABIRD *Edolisoma incertum*

Very common in both Fakfak and Kumawa at middle elevations, but absent in the lowlands. Heard more frequently than seen and easier to distinguish from other *Edolisoma* spp. (especially from *E. schisticeps*) by voice than by sight. Vocalisations vary geographically within New Guinea. In Kumawa and Fakfak we identified four vocalisations, all of which can be given by the same individual. One is a long rapid series of 27–60 notes on the same pitch, delivered at a rate of five notes per second for up to 12 seconds, decelerating towards the end, usually single notes but sometimes disyllabic, and typically mellow, musical and clear in tone, but sometimes simultaneously buzzy and musical. The second vocalisation is a slower, shorter series of 11–28 disyllabic notes at a rate of 1.6–2.0 notes per second, buzzy and not musical, heard in North Kumawa but not in South Kumawa or Fakfak. The third is a nasal call of 2–3 notes, repeated usually four times; the first note short, the second or third usually downslurred but sometimes upsurred. The last call is given in flight or when about to fly: a brief, musical, cheerful *tu-whit*, the first note short, the second slurred (usually upsurred). In north New Guinea but never in Fakfak or Central or South Kumawa, JD also often heard a distinctive, musical, mellow short *tp*.

COMMON CICADABIRD *Edolisoma tenuirostre*

One record: a pair in female plumage in second growth 6 m tall, 100 m from the beach in North Kumawa. Except for the resident population in southern New Guinea, individuals on the New Guinea mainland are mostly or entirely winter visitors from Australia to non-forest habitats.

BLACK PITOHUI *Melanorectes nigrescens*

Both black and brown individuals (presumably male and female, respectively) at high elevations in Fakfak and Kumawa. Brown birds are superficially very similar to Vogelkop
Bowerbird *Amblyornis inornata* and Little Shrikethrush *Colluricincla megarhyncha*, but the strongly hooked bill is a good field mark if seen well. Unlike *Pitohui dichrous*, *P. kirhocephalus* and Rusty Pitohui *Pseudorectes ferrugineus* in behaviour: occurs singly or in pairs, rather than in flocks, and perches upright like a large, stolid robin. Recent molecular studies reveal that it is closer to the yellow species of *Pachycephala* than to *Pitohui* species (Jønsson *et al.* 2007, Dumbacher *et al.* 2008). At least three vocalisations were identified in Fakfak and Kumawa. The simplest is a prolonged medium-pitch upslur, given either once or twice at an interval of slightly more than one second. The quality is distinctive, in that half the note is hoarse, the other half clear with a quality like calls of *Colluricincla megarhyncha*; the hoarse half can either precede or follow the clearer half. A second call comprises a single short note followed by five breezy identical downsllurs, lasts 2.5 seconds and is repeated every 10–12 seconds. The song is a loud, ascending and accelerating series of c.8 notes (reminiscent of some songs of Common Paradise Kingfisher *Tanysiptera galatea*, and a series of human burps), starting hoarser, but becoming less so during the series.

REGENT WHISTLER *Pachycephala schlegelii*
Common at high elevations on our two high-altitude Kumawa transects (South and Central Kumawa) and observed by Gibbs on Fakfak’s summit above elevations reached by JD. At JD’s highest South Kumawa camp (1,390 m), this was the loudest and most persistent dawn singer, and the nuclear species in mixed-species flocks. The unnamed Kumawa population is relatively small-bodied and possibly small-billed.

SCLATER’S WHISTLER *Pachycephala soror*
Common and noisy on all four Fakfak and Kumawa transects, occurring almost entirely at altitudes below Regent Whistler *P. schlegelii* (see above), with only slight altitudinal overlap on the South Kumawa transect. Songs comprise ringing repeated notes ending in louder slurs, but less loud than songs of *P. schlegelii*. The Kumawa population of *P. soror*, described as *P. s. octogenarii* (Diamond 1985), is the most distinctive named population of the Kumawas, and by far the most distinctive race of *P. soror*, if indeed it really belongs with *P. soror*. It is characterised by the male’s extremely narrow dark breast-band and its female-like dark grey (not black) crown and head-sides. The unnamed Fakfak population is similar but differs in that the male’s anterior breast immediately posterior to the breast-band is ochraceous, not yellow-olive.

RUSTY WHISTLER *Pachycephala hyperythra*
Elsewhere in New Guinea this is the common whistler of lower hill forests. In Fakfak and Kumawa it is puzzingly rare. In Fakfak one specimen was collected by Doherty, with single observations each by JD and by Rheindt, and in Kumawa there was one observation by JD.

HOODED PITOHUI *Pitohui dichrous*
Occasionally found at sea level in parts of New Guinea, but not on its outlying mountain ranges, where it is an upland species, descending only to between 553 m and 841 m on our four transects. It inhabits middle elevations, with little or no altitudinal overlap with Black Pitohui *Melanorectes nigrescens* (see above) at higher elevations, and some overlap with Northern Variable Pitohui *Pitohui kirhocephalus* that occurs at lower elevations down to sea level. It is an abundant, noisy and nuclear species of mixed flocks, but is shy and remains concealed within foliage except for quick flights, and is heard far more often than seen. Hooded Pitohui has at least six different vocalisations. The common flock song is a chatter comprising a series of medium-pitched mellow whistles, often starting with three
identical upslurs (first one, then after a slight pause a quick pair), similar to and confusable with the chatter of *P. kirhocephalus* but slower, clearer, less scratchy, less snapped and lower pitched. The second flock song, also comprising mellow to medium-pitched whistles, is related to the first: three quick, identical, equal-spaced upslurs without a longer interval between the first and second, followed by four slow notes—three on the same pitch, the fourth a downslur. The third song, much less common but more distinct, and apparently given by single individuals not in flocks, is a stereotyped, occasionally repeated, whistled, slow song of 2–4 notes, the first 1–3 notes on a constant pitch, the last a downslur. Calls include frequent soft growls given in flocks, and a fast dry even-pitch rattle similar to Greater Black Coucal *Centropus menbeki*. Finally, there is a rarely heard call with a markedly bell-like quality similar to bell calls of *Ornorectes cristatus*, comprising 2–3 beautiful, clear, ringing notes on the same pitch, followed by one note several tones higher in pitch.

GREATER MELAMPITTA *Megalampitta gigantea*

Common only in areas of karst terrain, where it has the remarkable habit of roosting underground in sinkholes (Diamond 1983). Heard far more often than seen. It never responded to playback at any of the three locations we encountered the species (Fakfak, Kumawa and Kikori). The song is a loud ringing disyllable (either upslurred or downslurred) repeated monotonously *ad nauseam* at a mean rate of 1–2 notes per second, but a diagnostic feature is that the precise interval between notes varies irregularly from note to note. Not encountered in apparently suitable areas around Central Kumawa Top Camp, perhaps because the elevation was too high.

TRUMPET MANUCODE *Phonygammus keraudrenii*

Abundant at middle elevations, calling frequently, often from a conspicuous treetop perch, in Fakfak and Kumawa. This species descends to the flat lowlands in southern New Guinea, but not in Fakfak, Kumawa or northern New Guinea. It often joins mixed brown and black flocks of pitohuis and other species. The wingbeats are loud. Many loud calls with different qualities are given, all of them single notes or disyllables. Especially common is a medium-pitched disyllable, the second note on a lower pitch and either clear and bell-like or slightly hoarse. Other calls are a similar disyllable but with a gulping quality, rather than like a bell; a short, staccato, monosyllabic gulp with a sharp initiation; a prolonged rasping *a-a-a-a-ah* in crescendo; a tremulous, fluttering, breath-like, crescendo; a short harsh rasp; and a short, staccato, slightly hoarse *whk*. Two dissimilar calls are often given as duets between distant birds, with no consistency in which type of call is given first and which second; *a-a-a-a-ah* or a rasp may be followed by a bell-like disyllable, or a bell-like disyllable is followed by *whk* or a rasp. An individual puffs up its body and holds its wings extended while calling.

BLACK-BILLED SICKLEBILL *Drepanornis albertisi*

In Kumawa mist-netted once, seen once in a mixed flock and heard calling three times.

PARADIGALLA *Paradigalla* sp.?

Gibbs reported seeing two paradigallas at high elevations in the Fakfaks, providing a sketched illustration. A paradigalla in the Fakfaks would be surprising, because paradigallas are not known from any outlying mountain range, except the much higher and larger Arfaks and their known altitudinal range lies mostly above the Fakfak summit. This interesting report awaits confirmation.
LESSER GROUND-ROBIN *Amalocichla incerta*
Abundant at high elevations in Kumawa, hopping on the ground. Not observed in Fakfak, whether because it is absent or because its elevational range lies mostly above the highest altitudes reached by ornithologists. Upperparts warm brown or orange-brown; clean white throat without black tips, becoming pale grey on the breast; obscure pale lores; a small concealed pale band in the wing. Nominate *A. i. incerta* of the Arfak Mountains differs in that its underparts below the throat are ochraceous or olive-brown. Race *olivascentior* of central New Guinea differs in its black-tipped throat and possibly in its dorsal coloration. The brilliant, very long song commences with up to six staccato, hoarse, piercing notes at long intervals, accelerating into a long, fast, jumbled, high-pitched, piercing, slightly hoarse cascade of notes.

ASHY ROBIN *Heteromyias albispecularis*
In Kumawa abundant from 1,026 m to the summit, and the commonest singer at dawn, but not found in Fakfak despite that JD and Gibbs each spent several days in that altitudinal range. Hops on the ground and forages in the understorey, occasionally up to 5 m. Closest to the Vogelkop nominate race, but evidently a distinctive undescribed subspecies (Fig. 7): dark grey back and cheeks, brown wings and tail; pale grey breast, becoming pale ochraceous on lower belly and undertail-coverts; dark mask through eyes; clear white chin, extending as a band below the eyes; and a striking broad white supercilium. There are three songs, all consisting of whistled clear discrete notes. The dawn song is a ringing series of 4–17 medium-high notes at a rate of 4–7 notes per second, often repeated after a short pause to create the sense of a long, even-pitch series with frequent short interruptions. This song is reminiscent of that of Piping Bellbird *Ornorestes cristatus*, but the latter’s song is uninterrupted and gradually accelerates. The second song is a fast medium-high series comprising many identical triplets, the third note of each at a slightly higher pitch than the first two, and the whole series preceded by a single note at the higher pitch of the third note of each triplet. The third song has various patterns of 2–4 medium-pitched notes ascending in pitch, confusingly similar to songs of Rusty Mouse-Warbler *Crateroscelis murina* but lower pitched and louder, and also similar to the three-note ascending call of Hook-billed Kingfisher *Melidora macrorrhina*.

SMOKY ROBIN *Peneothello cryptoleuca*
Abundant at high elevations in Kumawa and one of the commonest songsters there. Forages from the understorey up to 5 m, occasionally 9 m, often perching sideways on vertical trunks. The Kumawa population is an endemic subspecies *P. c. maximus* distinguished by its whitish underparts and large size (Diamond 1985); the white throat is especially obvious in the field. The song is a weak, tremulous, very fast whistled trill on a constant pitch, similar to the song of the Foja population, but lacking the latter’s final disyllabic flourish. The call consists of 2–5 identical, loud, medium-pitched, *Pachycephala*-like short downsllurs with sharp introductions. There are also loud alarm notes. In Fakfak, Gibbs (1994) listed the similar *P. cyanus* as frequent at elevations higher than those that JD reached in Fakfak, where JD did not observe any *Peneothello*; could the Fakfak birds observed by Gibbs be *P. cryptoleuca*, like the Kumawa population?

BANDED YELLOW ROBIN *Gennaeodryas placens*
G. placens and Black-sided Robin *P. hypoleuca* are both strongly territorial. Ecological segregation depends largely on altitude, *G. placens* occurring at higher elevations. In Fakfak there was no altitudinal overlap: JD’s highest observation of *P. hypoleuca* was at 494 m and
his lowest of *G. placens* was at 503 m. In North Kumawa two *G. placens* were encountered within the low-altitude range of *P. hypoleuca*, but with 100 m of horizontal separation from the nearest *P. hypoleuca*. *G. placens* prefers locally level terrain with an open understorey.

There are five common vocalisations: two songs and three calls. One song consists of 5–7 medium-pitched notes at a rate of three notes per second. All notes except the first are on the same pitch, while the first is either at the same pitch or a whole tone higher. This song is distinguished by its beautiful flute-like quality and by the sharp start to each note, like the pipes of a baroque organ or a person pronouncing the consonant ‘t’. A song of White-rumped Robin *Peneothello bimaculata* is similar. The other song is a weak, high- or medium-pitched, fast (five notes per second) whistled trill, which crescendos and decelerates slightly, either at constant pitch or slightly ascending or descending, and similar to a song of Blue-grey Robin *Peneothello cyanus*. The shortest call is 1–2 harsh scolding notes like Fantailed Monarch *Sympostachrus axillaris*. A second call comprises 2–3 notes with the flute-like quality of the first song: the first note short and hoarse, the second (and occasionally third) a downsllurred disyllable at a slighter higher pitch and not hoarse. The last call is a nasal, very rapidly repeated note at constant pitch, confusingly like a call of Spangled Drongo *Dicrurus bracteatus*, and so similar to a call of Shining Flycatcher *Myiagra alecto* that Fakfak and Kumawa natives confused the two species.

WHITE-FACED ROBIN *Tregellasia leucops*

The Kumawa and Fakfak populations of this common, geographically variable robin belong to the Vogelkop race *T. l. leucops* (Diamond 1985).

RED-RUMPED SWALLOW *Cecropis daurica*

A rare winter visitor to the New Guinea region: one at Fakfak airport on 13 March 2013, together with Pacific Swallows *H. tahitica* and Barn Swallows *H. rustica*. We noted the deeply forked tail, pale ochraceous rump and collar, and otherwise blue-black upperparts.

WHITE-EYES *Zosterops* sp.

In Kumawa we identified all three New Guinea mainland species of *Zosterops*, with readily distinguished songs. At low elevations in the hills (260–370 m), but absent from the flat lowlands, was Black-fronted White-eye *Z. atrifrons* with its unmistakable ‘wheel’ song: c.8 notes in a slightly descending series, with a quality like the turning of a wheel producing a sound at each rotation. At middle elevations (600–1,200 m) was New Guinea White-eye *Z. novaeguineae*, whose high-pitched, sweet, bright but loud song consisted of 1–5 slower introductory notes at 2–4 different pitches preceding a faster series of 5–8 notes all on the same lower pitch. The Kumawa population has a broad white eye-ring, yellow (not bright yellow-orange) throat, breast and undertail-coverts, white belly, and no black on the head. At Marsh Camp was Capped White-eye *Z. fuscicapilla*, uniformly yellow-olive except a white eye-ring and possibly a darker forehead, with a short, fast, medium-high-pitched, energetic, unmusical song. At Top Camp (1,654 m) we glimpsed white-eyes and heard their contact calls, without identifying them to species. In Fakfak JD and Rheindt both encountered *Z. atrifrons* at lower elevations and *Z. fuscicapilla* at high elevations, Gibbs found *Z. fuscicapilla* common at high elevations, and Doherty collected *Z. atrifrons* (presumably at low elevation). The only other New Guinea site besides Kumawa supporting all three species of *Zosterops* is Arfak, where Mayr collected all three without indications of altitude. The simplest interpretation, requiring confirmation, is that with increasing altitude *Z. atrifrons* is replaced by *Z. novaeguineae*, in turn replaced by *Z. fuscicapilla*, but with some overlap. Future observers in Fakfak should remain alert for the possible presence there, too, of *Z. novaeguineae*.

© 2015 The Authors; Journal compilation © 2015 British Ornithologists’ Club
GRAY'S GRASSHOPPER-WARBLER *Locustella fasciolata*
We heard and tape-recorded one in rank grass near the forest edge adjacent to Kumawa Marsh Camp.

GREY-STREAKED FLYCATCHER *Muscicapa griseisticta*
JD observed one of this Asian winter visitor in a village clearing in Fakfak on 3–4 March 1981.

EURASIAN TREE SPARROW *Passer montanus*
Common in Fakfak town in March 2013, but absent when JD was there in 1981 and 1983. This introduced species arrived in New Guinea in the 1990s.

BLUE-FACED PARROTFINCH *Erythrura trichroa*
This finch's local abundance is known to vary enormously, in synchrony with local seedings of bamboo. During our visits we found it abundant in Fakfak and at our Central Kumawa Marsh Camp, but absent at our Central Kumawa Top Camp and on JD's North and South Kumawa transects.

Acknowledgements
It is a pleasure to acknowledge our debts to people and organisations without whose efforts our projects could never have taken place. They include many residents of the Fakfaks and of Nusawulan village; members of the Indonesian Forestry Department and Environment Department; Richard Sneider, who co-planned and supported the 2013 Central Kumawa expedition; our field associates Richard Sneider, Hans Makobory, Franz Sadsuitubun, Ardi Irwanto, Max Ammer and Tertiuss Kamerer; Guy Kirwan and three anonymous referees for valuable suggestions on our manuscript; Christophe Thebaud, Borja Milá and Vincent Droissart for information added in proof from their November 2014 South Kumawa survey; and the National Geographic Society, World Wildlife Fund, Conservation International, and Resnick Family Foundation for support above.

References:

© 2015 The Authors; Journal compilation © 2015 British Ornithologists' Club
Appendix: birds of the Fakfak and Kumawa Peninsulas

The table lists all bird species recorded from the Fakfak and Kumawa Peninsulas, including seabirds seen up to 1 km offshore. Asterisks in the left margin denote upland species as defined in the text. Entries in columns 2–5 consist of a double line, with Fakfak entries to the left and Kumawa entries to the right of the double line.

| Column 1. Scientific and English species names. | Column 2. Records for Fakfak: a = JD in 1981 (plus a few records in 2013); D = Doherty in 1896; G = Gibbs in 1992; R = Rheindt in 2008–09; and S = Schädler in 1896. Records for Kumawa: b = JD in North Kumawa in 1983; c = JD in South Kumawa in 1983; d = JD & KDB in Central Kumawa in 2013; [a], [b], [c] = species described to us and reliably reported as present by local residents, but not observed by us; B = Bergman at Kambala in 1949. | Column 3. Estimates of abundance in the habitat and elevation of greatest abundance, only for our four surveys. 1 = just 1–2 records. 2 = from a min. of three, to a max. 7–12 records. 3 = from a min. 8–13, to a max. 14–28 records. 4 = the most abundant species, with more than a min. of 15–31 records. (The borderline min. and max. numbers of records differ between our four surveys, depending on the total number of records in each survey). - = not observed by us in that survey. x = observed by us in that survey, but no reliable abundance estimate available (usually because we spent too little time in the species’ zone of peak abundance). The entries for our four surveys are in the format a bb/c/d (see column 2 for codes). | Column 4. Altitudinal ranges (in m), only for our four surveys. The entries for our four surveys are in the format a bb/c/d (see column 2 for codes). - = not observed by us in that survey. x = observed by us in that survey, but only limited information concerning altitudinal range. | Column 5. Left and right of double line: local name in the Baham language’s dialect spoken in the Fakfak Mountains (mainly at Wanggasten and New Weri villages), and in Nusawulan village on the southern Kumawa coast, respectively. |

<table>
<thead>
<tr>
<th>Scientific and English species names</th>
<th>Records for Fakfak</th>
<th>Estimates of abundance</th>
<th>Altitudinal ranges</th>
<th>Local name in Baham language</th>
</tr>
</thead>
<tbody>
<tr>
<td>Column 1. Scientific and English species names.</td>
<td>**Column 2. Records for Fakfak: a = JD in 1981 (plus a few records in 2013); D = Doherty in 1896; G = Gibbs in 1992; R = Rheindt in 2008–09; and S = Schädler in 1896. Records for Kumawa: b = JD in North Kumawa in 1983; c = JD in South Kumawa in 1983; d = JD & KDB in Central Kumawa in 2013; [a], [b], [c] = species described to us and reliably reported as present by local residents, but not observed by us; B = Bergman at Kambala in 1949.</td>
<td>**Column 3. Estimates of abundance in the habitat and elevation of greatest abundance, only for our four surveys. 1 = just 1–2 records. 2 = from a min. of three, to a max. 7–12 records. 3 = from a min. 8–13, to a max. 14–28 records. 4 = the most abundant species, with more than a min. of 15–31 records. (The borderline min. and max. numbers of records differ between our four surveys, depending on the total number of records in each survey). - = not observed by us in that survey. x = observed by us in that survey, but no reliable abundance estimate available (usually because we spent too little time in the species’ zone of peak abundance). The entries for our four surveys are in the format a bb/c/d (see column 2 for codes).</td>
<td>**Column 4. Altitudinal ranges (in m), only for our four surveys. The entries for our four surveys are in the format a bb/c/d (see column 2 for codes). - = not observed by us in that survey. x = observed by us in that survey, but only limited information concerning altitudinal range.</td>
<td>**Column 5. Left and right of double line: local name in the Baham language’s dialect spoken in the Fakfak Mountains (mainly at Wanggasten and New Weri villages), and in Nusawulan village on the southern Kumawa coast, respectively.</td>
</tr>
<tr>
<td>Scientific and English names</td>
<td>Records</td>
<td>Abundance</td>
<td>Altitude</td>
<td>Local names</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Cassowary Cassuarius sp.</td>
<td>aGR I bcd</td>
<td>2 II 221</td>
<td>174–1,250 II 35–915 / 287–1,061/1,025</td>
<td>sorok I sorók</td>
</tr>
<tr>
<td>* Wattled Brushturkey Aepyornis arfakianus</td>
<td>a I cd</td>
<td>x II -x1</td>
<td>472–1,188 II -/- 1,437/1,654</td>
<td>yagóha I</td>
</tr>
<tr>
<td>Brushturkey Talegalla sp.</td>
<td>aR I bc</td>
<td>2 II 22-</td>
<td>437–787 II 91–372/0–896/-</td>
<td>wáben I waban</td>
</tr>
<tr>
<td>Orange-footed Scrubfowl Megapodus reinwardt</td>
<td>[a]DR I cB</td>
<td>x II -x-</td>
<td>x II -/-0/-</td>
<td>kabatayau I kobačau</td>
</tr>
<tr>
<td>Raja Shelduck Tadorna radjah</td>
<td>- I cB</td>
<td>-II -2-</td>
<td>-I -/-0/-</td>
<td></td>
</tr>
<tr>
<td>Pacific Black Duck Anas superciliosa</td>
<td>- I [c]d</td>
<td>-II -x2</td>
<td>-I -/-1,025</td>
<td>Itik</td>
</tr>
<tr>
<td>Storm-petrel Oceanites sp., Fregetta sp.</td>
<td>- I b</td>
<td>-II 1--</td>
<td>-I 0/-/-</td>
<td></td>
</tr>
<tr>
<td>Tricoloured Grebe Tachybaptus tricolor</td>
<td>-- I d</td>
<td>-II -2-</td>
<td>-I -/-1,025</td>
<td></td>
</tr>
<tr>
<td>Nankeen Night-Heron Nycticorax caledonicus</td>
<td>- I b</td>
<td>-II 1--</td>
<td>-I 0/-/-</td>
<td></td>
</tr>
<tr>
<td>Striated Heron Butorides striata</td>
<td>aS II cB</td>
<td>1 II -1-</td>
<td>0 I -/-0/-</td>
<td>Tarakóka</td>
</tr>
<tr>
<td>Great-billed Heron Ardea sumatrana</td>
<td>R I -</td>
<td>-II ---</td>
<td>-I -/-/-</td>
<td></td>
</tr>
<tr>
<td>Eastern Great Egret Ardea modesta</td>
<td>- I c</td>
<td>-II -1-</td>
<td>-I -/-0/-</td>
<td></td>
</tr>
<tr>
<td>Intermediate Egret Ardea intermedia</td>
<td>- I c</td>
<td>-II -1-</td>
<td>-I -/-0/-</td>
<td></td>
</tr>
<tr>
<td>Eastern Reef-Egret Egretta sacra</td>
<td>S I bc</td>
<td>-II 23-</td>
<td>-I 0/0/-</td>
<td>Kajóka</td>
</tr>
<tr>
<td>Australian Pelican Pelecanus conspicillatus</td>
<td>- I c</td>
<td>-II -1-</td>
<td>-I -/-0/-</td>
<td></td>
</tr>
<tr>
<td>Lesser Frigatebird Fregata ariel</td>
<td>a I bcB</td>
<td>1 II 22-</td>
<td>0 I 0/0/-</td>
<td>I ichtára</td>
</tr>
<tr>
<td>Brown Booby Sula leucogaster</td>
<td>- I cB</td>
<td>-II -1-</td>
<td>-I -/-0/-</td>
<td></td>
</tr>
<tr>
<td>Little Pied Cormorant Microcarbo melanoleucus</td>
<td>aR I c</td>
<td>1 II -2-</td>
<td>0 I -/-0/-</td>
<td>I sia</td>
</tr>
<tr>
<td>Little Black Cormorant Phalacrocorax sulcicostris</td>
<td>R I b</td>
<td>-II 1--</td>
<td>-I 0/-/-</td>
<td></td>
</tr>
<tr>
<td>Eastern Osprey Pandion cristatus</td>
<td>aS I bc</td>
<td>2 II 12-</td>
<td>0 I 0/0/-</td>
<td>Wöseláu I waseláu</td>
</tr>
<tr>
<td>Pacific Baza Aviceda subcristata</td>
<td>DS I bc</td>
<td>-II 21-</td>
<td>-I 0/0/-</td>
<td></td>
</tr>
<tr>
<td>Long-tailed Buzzard Henicopernis longicauda</td>
<td>G I cd</td>
<td>-II -11</td>
<td>-I -1,437 / 1,025</td>
<td>I ıarewan</td>
</tr>
<tr>
<td>Brahminy Kite Haliastur indus</td>
<td>aRS I bc</td>
<td>2 II 22-</td>
<td>0 I 0/0/-</td>
<td>Kaim-boet I Kiwa</td>
</tr>
<tr>
<td>White-bellied Sea-Eagle Haliaeetus leucogaster</td>
<td>aD I bc</td>
<td>2 II 12-</td>
<td>0 I 0/0/-</td>
<td>I lusi</td>
</tr>
<tr>
<td>Variable Goshawk Accipiter hiogaster</td>
<td>G I cB</td>
<td>-II -1-</td>
<td>-I -/-0/-</td>
<td></td>
</tr>
<tr>
<td>Grey-headed Goshawk Accipiter poliiceps</td>
<td>aGRS I d</td>
<td>-II -1-</td>
<td>690 I -/-1,025</td>
<td>Serábí I</td>
</tr>
<tr>
<td>Collared Sparrowhawk Accipiter cirrocephalus</td>
<td>- I b</td>
<td>-II 1--</td>
<td>-I 305/-/-</td>
<td></td>
</tr>
<tr>
<td>Meyer’s Goshawk Accipiter cf. meyerianus</td>
<td>- I d</td>
<td>-II -1-</td>
<td>-I -/-1,025</td>
<td></td>
</tr>
<tr>
<td>New Guinea Harpy-Eagle Harpypops novaeguineae</td>
<td>aR I b[c]d</td>
<td>2 II 2x2</td>
<td>747–1,208 I 260–906 /x/ 1,055–1,158</td>
<td>Kikma I toktók</td>
</tr>
<tr>
<td>Gurney’s Eagle Aquila gurneyi</td>
<td>- I d</td>
<td>-II -1-</td>
<td>-I -/-1,025</td>
<td></td>
</tr>
<tr>
<td>* White-striped Forest-Rail Rallicula leucospila</td>
<td>- I d</td>
<td>-II -32-</td>
<td>-I -/-1,009–1,417/1,025–1,654</td>
<td></td>
</tr>
<tr>
<td>Crake sp.</td>
<td>- I d</td>
<td>-II -1-</td>
<td>-I -/-1,025</td>
<td></td>
</tr>
<tr>
<td>Scientific and English names</td>
<td>Records</td>
<td>Abundance</td>
<td>Altitude</td>
<td>Local names</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Rufous-tailed Bush-hen Amaurornis moluccana</td>
<td>[a] l -</td>
<td>x ll --- x ll /-/-</td>
<td></td>
<td>kidi-kidi : ll</td>
</tr>
<tr>
<td>Beach Stone-curlew Esacus magnirostris</td>
<td>- l c -</td>
<td>- ll -2- - ll /0/-</td>
<td>I sikeken lemora : ll</td>
<td></td>
</tr>
<tr>
<td>Pacific Golden Plover Pluvialis fulva</td>
<td>a l -</td>
<td>1 ll --- 122 ll /-/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sand-plover Charadrius sp.</td>
<td>- l c -</td>
<td>- ll /-1- - ll /0/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whimbrel Numenius phaeopus</td>
<td>aS ll c -</td>
<td>1 ll -2- 0 ll /0/-</td>
<td>I tabak-tabir : ll</td>
<td></td>
</tr>
<tr>
<td>Common Greenshank Tringa nebularia</td>
<td>- l c -</td>
<td>- ll /-1- - ll /0/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tattler Tringa sp.</td>
<td>- l c -</td>
<td>- ll /-1- - ll /0/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Sandpiper Actitis hypoleucus</td>
<td>aS ll c -</td>
<td>1 ll -2- 0 ll /0/-</td>
<td>I sikeke : ll</td>
<td></td>
</tr>
<tr>
<td>Sanderling Calidris alba</td>
<td>- l c -</td>
<td>- ll /-1- - ll /0/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Red-necked Stint Calidris ruficollis</td>
<td>- l c -</td>
<td>- ll /-1- - ll /0/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crested Tern Thalasseus bergii</td>
<td>a l bc x ll xx- 0 ll /0/-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Little Tern Sterna albilunus</td>
<td>a l -</td>
<td>x ll --- 0 ll /-/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bridled Tern Onychoprion anethetus</td>
<td>a l c x ll /-x- 0 ll /0/-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roseate Tern Sterna dougallii</td>
<td>- l bc -</td>
<td>ll xx- - ll /0/-</td>
<td>I kananawa : ll</td>
<td></td>
</tr>
<tr>
<td>Black-naped Tern Sterna sumatrana</td>
<td>a l bc x ll xx- 0 ll /0/-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Tern Sterna hirundo</td>
<td>a l bc x ll xx- 0 ll /0/-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White-throated Pigeon Columba vitiensis</td>
<td>S ll -</td>
<td>- ll --- - ll /-/-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great Cuckoo-Dove Reinwardtoena reinwardtii</td>
<td>aDGS ll bd 3 ll 3-2 0-788 ll 260-742/-1,025-1,654</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown Cuckoo-Dove Macropygia ambonensis</td>
<td>aDGS ll bcdB 3 ll 212 575-1,261 ll 427-906/1,137-1,234/1,025-1,036</td>
<td>kuwok-kuwok : ll</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black-billed Cuckoo-Dove Macropygia nigroirostris</td>
<td>aDGS ll bcd 4 ll 124 0-1,261 ll 713/483-1,378/1,025-1,654</td>
<td>koa-koa : ll</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New Guinea Bronzewing Henicophaps albilunus</td>
<td>R ll bcd 3 ll 21- 604-802/113/-690-683</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cinnamon Ground-Dove Gallicolumba rufogula</td>
<td>a l bdB 2 ll 2-1 690-863 ll 640-695/-1,025-1,207</td>
<td>kambarat, tuyuk-tuyuk : ll</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Bronze Ground-Dove Alopecoenas beccarii</td>
<td>- l d -</td>
<td>- ll /-1- - ll /-/-1,143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Pheasant Pigeon Otidiphaps nobilis</td>
<td>aR l bd 3 ll 1-2 344-963 ll 325-747/-1,025-1,207</td>
<td>kwaha, waias : ll</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Western Crowned Pigeon Goura cristata</td>
<td>aGR ll bcd 2 ll 22- 437-690 ll 223-579/0-433/-344 yemuy yemu</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stephan’s Ground-Dove Chalcophaps stephanii</td>
<td>aDGRS l b[c]dB 2 ll 1x1 366-533 ll 172-183/-x/1,025-1,097</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wompoo Fruit-Dove Ptilinopus magnificus</td>
<td>aDGRS l bB 3 ll 3-2 273-774 ll 67-553/-623 suwinawau : ll</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pink-spotted Fruit-Dove Ptilinopus perlatus</td>
<td>aR l b 3 ll 4-2 242-690 ll 67-623/-623</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>* Ornate Fruit-Dove Ptilinopus ornatus</td>
<td>DGR l d - ll /-2 x ll /-/-1,654</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orange-fronted Fruit-Dove Ptilinopus aurantiifrons</td>
<td>- l cB - ll /-1- - ll /0/-</td>
<td>tota : ll</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific and English names</td>
<td>Records</td>
<td>Abundance</td>
<td>Altitude</td>
<td>Local names</td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>-----------</td>
<td>---------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Superb Fruit-Dove Ptilinopus superbus</td>
<td>aDGRS bcdB</td>
<td>4 423</td>
<td>69–1,189</td>
<td>99–906/396–1,389/1,025–1,071</td>
</tr>
<tr>
<td>Coroneted Fruit-Dove Ptilinopus coronulatus</td>
<td>aR b</td>
<td>1 2–</td>
<td>684–787</td>
<td>204–273–/-/-</td>
</tr>
<tr>
<td>Beautiful Fruit-Dove Ptilinopus pulchellus</td>
<td>aDRS b</td>
<td>4 4–</td>
<td>69–841</td>
<td>67–579–/-/-</td>
</tr>
<tr>
<td>* Mountain Fruit-Dove Ptilinopus bellus</td>
<td>aGR bcd</td>
<td>3 344</td>
<td>810–1,314</td>
<td>387–905/877–1,414/1,025–1,654</td>
</tr>
<tr>
<td>* Claret-breasted Fruit-Dove Ptilinopus viridis</td>
<td>aD bd</td>
<td>4 4–2</td>
<td>69–1,208</td>
<td>229–937–/-1,025–1,158</td>
</tr>
<tr>
<td>Orange-bellied Fruit-Dove Ptilinopus izomus</td>
<td>aR b</td>
<td>2 3–</td>
<td>69–504</td>
<td>0–520–/-/-</td>
</tr>
<tr>
<td>Dwarf Fruit-Dove Ptilinopus naimus</td>
<td>aR b</td>
<td>2 2–</td>
<td>69–690</td>
<td>67–347–/-/-</td>
</tr>
<tr>
<td>Elegant Imperial Pigeon Ducula concinna</td>
<td>- c</td>
<td>- 1-</td>
<td>-1/0/</td>
<td>-/-1,025–1,654</td>
</tr>
<tr>
<td>Purple-tailed Imperial Pigeon Ducula rufiagaster</td>
<td>aDGR b[c]</td>
<td>3 3x–</td>
<td>198–906</td>
<td>67–579/x/-</td>
</tr>
<tr>
<td>Pinon Imperial Pigeon Ducula pinon</td>
<td>aGRS bcb</td>
<td>3 4x–</td>
<td>0–789</td>
<td>0–520/0/512/-</td>
</tr>
<tr>
<td>Zoe’s Imperial Pigeon Ducula zoeae</td>
<td>aDRG bcb</td>
<td>3 31–</td>
<td>0–963</td>
<td>41–906/0/-</td>
</tr>
<tr>
<td>Pied Imperial Pigeon Ducula bicolor</td>
<td>- c</td>
<td>- 2-</td>
<td>-/-0/-</td>
<td>-1,025–1,654</td>
</tr>
<tr>
<td>* Papuan Mountain-Pigeon Gymnophaps albertissii</td>
<td>aGd</td>
<td>2 2–</td>
<td>787–1,208</td>
<td>-/-1,025–1,654</td>
</tr>
<tr>
<td>Palm Cockatoo Probosciger aterrimus</td>
<td>aDGRS bcd</td>
<td>2 212</td>
<td>690–1,208</td>
<td>0–728/0/483/1,025–1,121</td>
</tr>
<tr>
<td>Sulphur-crested Cockatoo Cacatua galerita</td>
<td>aDGRS bc</td>
<td>3 32–</td>
<td>0–1,208</td>
<td>0–742/0/137/-</td>
</tr>
<tr>
<td>* Red-flanked Lorikeet Charmosyna placentes and/or Red-fronted Lorikeet C. rubronotata</td>
<td>aR bcd</td>
<td>2 212</td>
<td>634</td>
<td>138–553/923/1,025–1,654</td>
</tr>
<tr>
<td>* Fairy Lorikeet Charmosyna pulchella</td>
<td>aG d</td>
<td>2 12</td>
<td>722–1,189</td>
<td>-/-1,389–1,025–1,654</td>
</tr>
<tr>
<td>* Josephine’s Lorikeet Charmosyna josefinae</td>
<td>a d</td>
<td>1 2–</td>
<td>1,189</td>
<td>1,025–1,654</td>
</tr>
<tr>
<td>Black-capped Lory Lorius lory</td>
<td>aDGRS bc</td>
<td>3 4x–</td>
<td>0–1,189</td>
<td>0–906/0/524/-</td>
</tr>
<tr>
<td>Dusky Lory Pseudeos fuscata</td>
<td>aGS b</td>
<td>2 ---</td>
<td>0–1,208</td>
<td>-/-/-</td>
</tr>
<tr>
<td>Black Lory Chalcopsitta atra</td>
<td>aR B</td>
<td>1 ---</td>
<td>0 --/0/-</td>
<td>-/-/-</td>
</tr>
<tr>
<td>Rainbow Lorikeet Trichoglossus haematodus</td>
<td>aDGRS bcdB</td>
<td>3 442</td>
<td>0–1,208</td>
<td>0–906/0/1,437/1,025–1,654</td>
</tr>
<tr>
<td>Large Fig-Parrot Psittaculirostris desmarestii</td>
<td>aDGRS bB</td>
<td>1 2–</td>
<td>0 0–457</td>
<td>-/-/-</td>
</tr>
<tr>
<td>Orange-breasted Fig-Parrot Cyclopsitta guilermiterti</td>
<td>R d</td>
<td>- 1–1</td>
<td>-/-1/0,125–1,109</td>
<td></td>
</tr>
<tr>
<td>Double-eyed Fig-Parrot Cyclopsitta diophthalaina</td>
<td>R -</td>
<td>- ---</td>
<td>-/-/-</td>
<td>-/-/-</td>
</tr>
<tr>
<td>Moluccan King-Parrot Alisterus amboinensis</td>
<td>aDGR bcdB</td>
<td>3 4x2</td>
<td>198–881</td>
<td>82–906/13–158/1,025–1,654</td>
</tr>
<tr>
<td>Eclectus Parrot Eclectus roratus</td>
<td>aDGRS bcB</td>
<td>2 22</td>
<td>0–600</td>
<td>0–595/-/-</td>
</tr>
</tbody>
</table>

© 2015 The Authors; Journal compilation © 2015 British Ornithologists’ Club
<table>
<thead>
<tr>
<th>Scientific and English names</th>
<th>Records</th>
<th>Abundance</th>
<th>Altitude</th>
<th>Local names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red-cheeked Parrot Geoffroyus geoffroyi</td>
<td>aDRS ‖ bc</td>
<td>2 ‖ 31-</td>
<td>0–625 ‖ 67–579/192–1,210/</td>
<td>penong-penong ‖</td>
</tr>
<tr>
<td>* Blue-collar Parrot Geoffroyus simplex</td>
<td>a ‖ bcd</td>
<td>3 ‖ 322</td>
<td>617–1,314 ‖ 553–906/1,052–1,234/1,025–1,219</td>
<td>gwining-gwining, geruán ‖</td>
</tr>
<tr>
<td>Yellow-capped Pygmy Parrot Micropsitta keiensis</td>
<td>aDRS ‖ b</td>
<td>1 ‖ 2-</td>
<td>273 ‖ 375–553/-/-</td>
<td>sikowbá-kowbá ‖</td>
</tr>
<tr>
<td>* Red-breasted Pygmy Parrot Micropsitta bruijni</td>
<td>aD ‖ bcd</td>
<td>2 ‖ 223</td>
<td>774–906 ‖ 704–762/1,424–1,437/1,067–1,654</td>
<td>l bis’nbao</td>
</tr>
<tr>
<td>Greater Black Coucal Centropus menbeki</td>
<td>aDGR ‖ b[c]B</td>
<td>2 ‖ 2x-</td>
<td>0–690 ‖ 0/x/-</td>
<td>kuhúbu ‖</td>
</tr>
<tr>
<td>Lesser Black Coucal Centropus bernsteinii</td>
<td>R ‖ -</td>
<td>- ‖ ---</td>
<td>- ‖ -/-/-</td>
<td></td>
</tr>
<tr>
<td>Dwarf Koel Microdynamis parva</td>
<td>a ‖ bc</td>
<td>3 ‖ 31-</td>
<td>0–787 ‖ 260–770/0–483/-</td>
<td></td>
</tr>
<tr>
<td>Eastern Koel Eudynamys orientalis</td>
<td>a5 ‖ d</td>
<td>2 ‖ -2</td>
<td>690–787 ‖ -/-/1,025</td>
<td></td>
</tr>
<tr>
<td>Channel-billed Cuckoo Scythrops novaehollandiae</td>
<td>R ‖ b</td>
<td>- ‖ 2-</td>
<td>- ‖ 0-685/-/-</td>
<td></td>
</tr>
<tr>
<td>* Rufous-throated Bronze Cuckoo Chalcites ruficolis</td>
<td>- ‖ d</td>
<td>- ‖ -1</td>
<td>- ‖ -/-/1,025</td>
<td></td>
</tr>
<tr>
<td>* White-eared Bronze Cuckoo Chalcites meyerii</td>
<td>DG ‖ bc</td>
<td>- ‖ 32-</td>
<td>- ‖ 397–906/113–1,437/-</td>
<td></td>
</tr>
<tr>
<td>Little Bronze Cuckoo Chalcites minutillus</td>
<td>a ‖ c</td>
<td>2 ‖ -1-</td>
<td>690 ‖ -/-/113/-</td>
<td></td>
</tr>
<tr>
<td>White-crowned Cuckoo Caliechthrus leucolophus</td>
<td>aD ‖ b</td>
<td>2 ‖ 3-</td>
<td>684–863 ‖ 191–802/-/-</td>
<td>kwândandong ‖</td>
</tr>
<tr>
<td>Chestnut-breasted Cuckoo Cacomantis castaneiventris</td>
<td>aGR ‖ bcd</td>
<td>3 ‖ 422</td>
<td>509–1,189 ‖ 168–906/265–1,137/1,025–1,158</td>
<td></td>
</tr>
<tr>
<td>Brush Cuckoo Cacomantis variolosus</td>
<td>aDGR ‖ b</td>
<td>2 ‖ 2-</td>
<td>0–690 ‖ 0–405/-/-</td>
<td></td>
</tr>
<tr>
<td>Sooty Owl Tyto tenerebrosa</td>
<td>aG ‖ bd</td>
<td>1 ‖ 1-2</td>
<td>787–1,208 ‖ 405–520/-1,025</td>
<td></td>
</tr>
<tr>
<td>Rufous Owl Ninox rufa?</td>
<td>G? ‖ -</td>
<td>- ‖ ---</td>
<td>- ‖ -/-/-</td>
<td></td>
</tr>
<tr>
<td>Papuan Boobook Ninox theomacha</td>
<td>[D]G ‖ bcd</td>
<td>- ‖ x12</td>
<td>- ‖ 520–802/923/1,025</td>
<td>tutuâkmu ‖</td>
</tr>
<tr>
<td>Marbled Frogmouth Podargus ocellatus</td>
<td>aDG ‖ bc</td>
<td>1 ‖ 3-</td>
<td>690 ‖ 520–802/923/-</td>
<td>kabung-kabung ‖</td>
</tr>
<tr>
<td>Papuan Frogmouth Podargus pappensis</td>
<td>RS ‖ bcd</td>
<td>- ‖ 111</td>
<td>- ‖ 405/0/1,025</td>
<td>l kuni</td>
</tr>
<tr>
<td>Large-tailed Nightjar Caprimulgus macrurus</td>
<td>- ‖ c</td>
<td>- ‖ -2-</td>
<td>- ‖ -0/-</td>
<td>l marap-tenten</td>
</tr>
<tr>
<td>* Feline Owlet-Nightjar Aegotheles insignis</td>
<td>- ‖ d</td>
<td>- ‖ -2</td>
<td>- ‖ -/-/1,025</td>
<td></td>
</tr>
<tr>
<td>* Mountain Owlet-Nightjar Aegotheles albertisi</td>
<td>- ‖ cd</td>
<td>- ‖ -x2</td>
<td>- ‖ -/1,450/1,025–1,654</td>
<td></td>
</tr>
<tr>
<td>* owlet-nightjar Aegotheles sp.</td>
<td>- ‖ b</td>
<td>- ‖ x--</td>
<td>- ‖ 183/-/-</td>
<td></td>
</tr>
<tr>
<td>Moustached Treeswift Hemiprocne mystacea</td>
<td>[a]R ‖ b</td>
<td>x ‖ 2-</td>
<td>x ‖ 0–906/-/-</td>
<td>pées-pées ‖</td>
</tr>
<tr>
<td>Glossy Swiftlet Collocalia esculenta</td>
<td>aGR ‖ bcd</td>
<td>3 ‖ 322</td>
<td>0–1,313 ‖ 0–906/0–1,437/1,025–1,654</td>
<td></td>
</tr>
<tr>
<td>* Mountain Swiftlet Aerodramus hirundinaceus</td>
<td>a ‖ cd</td>
<td>3 ‖ -x2</td>
<td>1,167–1,208 ‖ -/-/1,097/1,025–1,161</td>
<td></td>
</tr>
<tr>
<td>Uniform Swiftlet Aerodramus vanikorensis</td>
<td>aGR ‖ bc</td>
<td>3 ‖ 23-</td>
<td>0–690 ‖ 0–906/0–483/-</td>
<td>yaya ‖</td>
</tr>
<tr>
<td>Scientific and English names</td>
<td>Records</td>
<td>Abundance</td>
<td>Altitude</td>
<td>Local names</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Papuan Spinetailed Swift Mearnsia novaeguineae</td>
<td>R</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oriental Dollarbird Eurystomus orientalis</td>
<td>RS</td>
<td></td>
<td>bc</td>
<td>-</td>
</tr>
<tr>
<td>Common Paradise-Kingfisher Tanysiptera galatea</td>
<td>aRS</td>
<td></td>
<td>bcB</td>
<td>1</td>
</tr>
<tr>
<td>Red-breasted Paradise-Kingfisher Tanysiptera nympha</td>
<td>aGS</td>
<td></td>
<td>-</td>
<td>x</td>
</tr>
<tr>
<td>Hook-billed Kingfisher Melidora macrorhina</td>
<td>aGRS</td>
<td></td>
<td>bc</td>
<td>2</td>
</tr>
<tr>
<td>Rufous-bellied Kookaburra Dacelo gaudichaud</td>
<td>aDGRS</td>
<td></td>
<td>bcB</td>
<td>2</td>
</tr>
<tr>
<td>Collared Kingfisher Todiramphus chloris</td>
<td>S</td>
<td></td>
<td>c</td>
<td>-</td>
</tr>
<tr>
<td>Sacred Kingfisher Todiramphus sanctus</td>
<td>R</td>
<td></td>
<td>c</td>
<td>-</td>
</tr>
<tr>
<td>Yellow-billed Kingfisher Syma torotoro</td>
<td>aDGRS</td>
<td></td>
<td>bcdB</td>
<td>3</td>
</tr>
<tr>
<td>Common Kingfisher Alcedo atthis</td>
<td>-</td>
<td></td>
<td>b</td>
<td>-</td>
</tr>
<tr>
<td>Papuan Dwarf Kingfisher Ceyx solitarius</td>
<td>aDRS</td>
<td></td>
<td>bc</td>
<td>2</td>
</tr>
<tr>
<td>Azure Kingfisher Ceyx azureus</td>
<td>DS</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Little Kingfisher Ceyx pusillus</td>
<td>R</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rainbow Bee-eater Merops ornatus</td>
<td>G</td>
<td></td>
<td>b</td>
<td>-</td>
</tr>
<tr>
<td>Blyth’s Hornbill Rhyticeros plicatus</td>
<td>aDGRS</td>
<td></td>
<td>bcB</td>
<td>3</td>
</tr>
<tr>
<td>Hooded Pitta Pitta sordida</td>
<td>aDRS</td>
<td></td>
<td>bcB</td>
<td>1</td>
</tr>
<tr>
<td>White-eared Catbird Ailuroedus buccoides</td>
<td>R</td>
<td></td>
<td>bc</td>
<td>-</td>
</tr>
<tr>
<td>* Black-eared Catbird Ailuroedus melanotis</td>
<td>aGR</td>
<td></td>
<td>bcd</td>
<td>2</td>
</tr>
<tr>
<td>* Vogelkop Bowerbird Amblyornis inornata</td>
<td>[a]GR</td>
<td></td>
<td>cd</td>
<td>x</td>
</tr>
<tr>
<td>* Masked Bowerbird Sericulus aureus?</td>
<td>?</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Wallace’s Fairywren Sipodotus wallacii</td>
<td>aD</td>
<td></td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>Broad-billed Fairywren Chenorhamphus grayi</td>
<td>-</td>
<td></td>
<td>b</td>
<td>-</td>
</tr>
<tr>
<td>Emperor Fairywren Malurus cyanopeplus</td>
<td>aDRS</td>
<td></td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>White-shouldered Fairywren Malurus alboscapulatus</td>
<td>-</td>
<td></td>
<td>d</td>
<td>-</td>
</tr>
<tr>
<td>* Red-collared Myzomela Myzomela rosenbergii</td>
<td>aGR</td>
<td></td>
<td>cd</td>
<td>3</td>
</tr>
<tr>
<td>Dusky Myzomela Myzomela obscura</td>
<td>-</td>
<td></td>
<td>B</td>
<td>-</td>
</tr>
<tr>
<td>Ruby-throated Myzomela Myzomela equestris</td>
<td>aD</td>
<td></td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>* Red Myzomela Myzomela cruentata</td>
<td>aDGR</td>
<td></td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Scientific and English names</td>
<td>Records</td>
<td>Abundance</td>
<td>Altitude</td>
<td>Local names</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>Papuan Black Myzomela Myzomela nigrita</td>
<td>aDS</td>
<td>2</td>
<td>723–774</td>
<td>-/-/-</td>
</tr>
<tr>
<td>Green-backed Honeyeater Glycichaera fallax</td>
<td>aDR</td>
<td>1</td>
<td>690–787</td>
<td>351–770/-/</td>
</tr>
<tr>
<td>* Rufous-sided Honeyeater Ptihopra erythropleura</td>
<td>aG</td>
<td>4</td>
<td>1,207–1,314</td>
<td>-/1,286–1,437/1,097–1,654</td>
</tr>
<tr>
<td>Streak-headed Honeyeater Pycnopgyus stictoccephalus</td>
<td>-</td>
<td>-</td>
<td>0–378</td>
<td>-/-/-</td>
</tr>
<tr>
<td>Silver-eared Honeyeater Lichmera alboculiaris</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-/-/-</td>
</tr>
<tr>
<td>Tawny-breasted Honeyeater Xanthitis flaviventris</td>
<td>aDRS</td>
<td>4</td>
<td>367–1,208</td>
<td>61–906/125–658/1,178–1,158</td>
</tr>
<tr>
<td>* Spotted Honeyeater Xanthitis polygrammus</td>
<td>a</td>
<td>1</td>
<td>635</td>
<td>-/-/-</td>
</tr>
<tr>
<td>Meyer’s Friarbird Philemon meyeri</td>
<td>a bc</td>
<td>3</td>
<td>172–684</td>
<td>0–274/0–207/-</td>
</tr>
<tr>
<td>Helmeted Friarbird Philemon buceroides</td>
<td>aDRS</td>
<td>4</td>
<td>0–579</td>
<td>61–906/0–1,030/-</td>
</tr>
<tr>
<td>* Smoky Honeyeater Melipotes sp.</td>
<td>aGR</td>
<td>2</td>
<td>1,189–1,261</td>
<td>-/1,389–1,426/1,653</td>
</tr>
<tr>
<td>Long-billed Honeyeater Melilistes megarynchus</td>
<td>aDGR</td>
<td>3</td>
<td>0–1,189</td>
<td>262–906/1,402/1,025–1,113</td>
</tr>
<tr>
<td>* Olive Straightbill Timeliopsis fulvigula</td>
<td>G</td>
<td>-</td>
<td>-</td>
<td>-/-/-</td>
</tr>
<tr>
<td>Tawny Straightbill Timeliopsis grisegula</td>
<td>R b</td>
<td>-</td>
<td>610–770/-/</td>
<td></td>
</tr>
<tr>
<td>* Vogelkop Melidectes Melidectes leucostephes</td>
<td>G</td>
<td>-22</td>
<td>-/844–1,408/1,025–1,654</td>
<td></td>
</tr>
<tr>
<td>Varied Honeyeater Gavicalis versicolor</td>
<td>- cB</td>
<td>-x-</td>
<td>-/0/-</td>
<td>totekweras</td>
</tr>
<tr>
<td>Puff-backed Meliphaga Meliphaga aruensis</td>
<td>a</td>
<td>1</td>
<td>684</td>
<td>-/-/-</td>
</tr>
<tr>
<td>Yellow-gaped Meliphaga Meliphaga flavircutis</td>
<td>R</td>
<td>-</td>
<td>-</td>
<td>-/-/-</td>
</tr>
<tr>
<td>* White-eared Meliphaga Meliphaga montana</td>
<td>aDR</td>
<td>4</td>
<td>657–966</td>
<td>387–729/-/</td>
</tr>
<tr>
<td>* Mountain Meliphaga Meliphaga orientalis</td>
<td>aR</td>
<td>3</td>
<td>975–1,189</td>
<td>688–906/1,137–1,437/1,025–1,128</td>
</tr>
<tr>
<td>Mimic Meliphaga Meliphaga analoga</td>
<td>aDRS</td>
<td>2</td>
<td>0–856</td>
<td>229–664/244–506/</td>
</tr>
<tr>
<td>Scrub Meliphaga Meliphaga albonotata</td>
<td>DR bc</td>
<td>11-</td>
<td>-</td>
<td>0/0/</td>
</tr>
<tr>
<td>* Goldenface Pachycare flavogriseus</td>
<td>a</td>
<td>4</td>
<td>787–1,208</td>
<td>-/-/-</td>
</tr>
<tr>
<td>Rusty Mouse-Warbler Crateroscelis murina</td>
<td>aDGR</td>
<td>4</td>
<td>0–1,314</td>
<td>677–906/0–1,137–1,402/1,025</td>
</tr>
<tr>
<td>* Mountain Mouse-Warbler Crateroscelis robusta</td>
<td>G</td>
<td>-33</td>
<td>-/1,389–1,437/1,025–1,654</td>
<td></td>
</tr>
<tr>
<td>Pale-billed Scrubwren Sericornis spinolatera</td>
<td>aGR</td>
<td>2</td>
<td>690–963</td>
<td>235–905/483–1,250/1,025</td>
</tr>
<tr>
<td>* Tropical Scrubwren Sericornis beccarii</td>
<td>aGR</td>
<td>4</td>
<td>1,170–1,261</td>
<td>677–906/1,137–1,402/1,025</td>
</tr>
<tr>
<td>* Large Scrubwren Sericornis nouhuysi</td>
<td>- d</td>
<td>-1</td>
<td>-</td>
<td>-/-/1,654</td>
</tr>
<tr>
<td>Scientific and English names</td>
<td>Records</td>
<td>Abundance</td>
<td>Altitude</td>
<td>Local names</td>
</tr>
<tr>
<td>----------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>* Vogelkop Scrubwren Sericornis rufescens</td>
<td>a?G? cd</td>
<td>x -44</td>
<td>1,170–1,261</td>
<td>l sisi</td>
</tr>
<tr>
<td>* Grey Thornbill Acanthiza cinerea</td>
<td>aG c</td>
<td>2 -3-</td>
<td>1,170–1,261</td>
<td></td>
</tr>
<tr>
<td>Yellow-bellied Gerygone Gerygone chrysogaster</td>
<td>aDGR bcb</td>
<td>4 42-</td>
<td>172–788</td>
<td></td>
</tr>
<tr>
<td>Green-backed Gerygone Gerygone chloronota</td>
<td>a bc</td>
<td>3 42-</td>
<td>0–878</td>
<td></td>
</tr>
<tr>
<td>Fairy Gerygone Gerygone palpebrosa</td>
<td>aDGR bc</td>
<td>4 41-</td>
<td>172–835</td>
<td></td>
</tr>
<tr>
<td>Large-billed Gerygone Gerygone magnirostris</td>
<td>DR c</td>
<td>-1-</td>
<td>-0/-0/-</td>
<td></td>
</tr>
<tr>
<td>* Brown-breasted Gerygone Gerygone ruficollis</td>
<td>aGR bcd</td>
<td>4 322</td>
<td>787–1,314</td>
<td>suondénde</td>
</tr>
<tr>
<td>Papuan Babbler Garritornis isidorei</td>
<td>aDRS bB</td>
<td>2 2-</td>
<td>172–774</td>
<td>wasisía</td>
</tr>
<tr>
<td>Black Berryepecker Melanocharis nigra</td>
<td>DGRS b</td>
<td>- 3-</td>
<td>67–553</td>
<td></td>
</tr>
<tr>
<td>* Mid-mountain Berryepecker Melanocharis longiauda</td>
<td>G bcd</td>
<td>- 132</td>
<td>906/1,082/1,437/1,025–1,036</td>
<td></td>
</tr>
<tr>
<td>* Streaked Berryepecker Melanocharis striativentris?</td>
<td>a? - x</td>
<td>---</td>
<td>?1,170</td>
<td></td>
</tr>
<tr>
<td>Spectacled Longbill Oeotistoma iliolophus</td>
<td>aG bcd</td>
<td>3 341</td>
<td>360–1,234</td>
<td>das-das</td>
</tr>
<tr>
<td>Pygmy Longbill Oeotistoma pygmaenum</td>
<td>aD</td>
<td>1 ---</td>
<td>634–774</td>
<td></td>
</tr>
<tr>
<td>Yellow-bellied Longbill Toxorhamphus novaeguineae</td>
<td>aDGR bcd</td>
<td>4 431</td>
<td>172–1,189</td>
<td>tíwis-túwis</td>
</tr>
<tr>
<td>Blue Jewel-babbler Ptilorrhoa caerulescens</td>
<td>a b</td>
<td>2 2-</td>
<td>177–690</td>
<td>arará</td>
</tr>
<tr>
<td>* Chestnut-backed Jewel-babbler Ptilorrhoa castanonota</td>
<td>aR bcd</td>
<td>3 223</td>
<td>617–1,189</td>
<td>das-das</td>
</tr>
<tr>
<td>Yellow-breasted Boatbill Machaerirhynchus flaviventris</td>
<td>aDR bcb</td>
<td>3 32-</td>
<td>504–906</td>
<td></td>
</tr>
<tr>
<td>* Black-breasted Boatbill Machaerirhynchus nigripictus</td>
<td>G d</td>
<td>-2-</td>
<td>-1/1,025–1,654</td>
<td></td>
</tr>
<tr>
<td>Lowland Peltops Peltops blainvillii</td>
<td>DR bc</td>
<td>- 13-</td>
<td>-0/-0/-</td>
<td></td>
</tr>
<tr>
<td>* Mountain Peltops Peltops montanus</td>
<td>aGR b</td>
<td>2 2-</td>
<td>684–690</td>
<td>sererango</td>
</tr>
<tr>
<td>Black Butcherbird Cracticus quoyi</td>
<td>aDRS b</td>
<td>2 3-</td>
<td>0–690</td>
<td>kavét kowet</td>
</tr>
<tr>
<td>Hooded Butcherbird Cracticus cassinus</td>
<td>aDRS bc</td>
<td>3 32-</td>
<td>0–558</td>
<td></td>
</tr>
<tr>
<td>White-breasted Woodswallow Artamus leucorynchus</td>
<td>S bc</td>
<td>-13-</td>
<td>0/0/-</td>
<td></td>
</tr>
<tr>
<td>* Great Woodswallow Artamus maximus</td>
<td>aG d</td>
<td>1 -2</td>
<td>1,189–1,311</td>
<td>gwas-kwas</td>
</tr>
<tr>
<td>* Stout-billed Cuckooshrike Coracina caeruleogrisea</td>
<td>aGR bd</td>
<td>1 2-2</td>
<td>1,189</td>
<td></td>
</tr>
<tr>
<td>* Barred Cuckooshrike Coracina lineata</td>
<td>a bd</td>
<td>-1-1</td>
<td>728/-1,025</td>
<td></td>
</tr>
<tr>
<td>Boyer’s Cuckooshrike Coracina boyeri</td>
<td>aRS b</td>
<td>2 2-</td>
<td>69–787</td>
<td></td>
</tr>
<tr>
<td>White-bellied Cuckooshrike Coracina papuensis</td>
<td>aDRS bc</td>
<td>1 22-</td>
<td>61</td>
<td>l timitimur</td>
</tr>
<tr>
<td>Black-browed Triller Lalage atroviros</td>
<td>aR bc</td>
<td>2 11-</td>
<td>501–690</td>
<td></td>
</tr>
</tbody>
</table>

© 2015 The Authors; Journal compilation © 2015 British Ornithologists' Club
<table>
<thead>
<tr>
<th>Scientific and English names</th>
<th>Records</th>
<th>Abundance</th>
<th>Altitude</th>
<th>Local names</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Black-bellied Cicadabird Edolisoma montanum</td>
<td>aG bcd</td>
<td>3 322</td>
<td>863–1,314 786–906/1,036–1,259/1,025–1,219</td>
<td>uriyási</td>
</tr>
<tr>
<td>* Papuan Cicadabird Edolisoma incertum</td>
<td>aGR bc</td>
<td>3 43-</td>
<td>690–787 518–906/403–1,128/-</td>
<td>uriyási</td>
</tr>
<tr>
<td>Common Cicadabird Edolisoma tenuirostre</td>
<td>- b</td>
<td>- 1--</td>
<td>- 0/-/-</td>
<td></td>
</tr>
<tr>
<td>Grey-headed Cuckoooshrike Edolisoma schisticeps</td>
<td>aD b</td>
<td>3 3--</td>
<td>573–835 0–671/-/-</td>
<td>uriyási</td>
</tr>
<tr>
<td>Black Cicadabird Edolisoma melas</td>
<td>aDR bc</td>
<td>4 31-</td>
<td>172–905 67–770/0/-</td>
<td></td>
</tr>
<tr>
<td>* Varied Sittella Daphoenositta chrysoptera</td>
<td>R -</td>
<td>- --</td>
<td>- -/-/-</td>
<td></td>
</tr>
<tr>
<td>Rufous-naped Bellbird Aleadryas rafiniucha</td>
<td>G d</td>
<td>- -1-</td>
<td>- -/-/1,025–1,189</td>
<td></td>
</tr>
<tr>
<td>Piping Bellbird Ornorectes cristatus</td>
<td>aGR bcd</td>
<td>2 422</td>
<td>657–988 573–937/483–1,137/1,025</td>
<td>wobwób</td>
</tr>
<tr>
<td>Little Shrikethrush Colluricincla megaryncha</td>
<td>aDGR bcd</td>
<td>4 433</td>
<td>172–1,259 0–876/287–1,055/1,025</td>
<td>kombas</td>
</tr>
<tr>
<td>Rusty Pitohui Pseudorectes ferrugineus</td>
<td>aDGRS bcd</td>
<td>3 422</td>
<td>369–1,261 61–906/0–524/1,025–1,117</td>
<td>wasisia, tuk-tökma</td>
</tr>
<tr>
<td>* Black Pitohui Melanorectes nigrescens</td>
<td>aG cd</td>
<td>1 -31</td>
<td>1,283 -/-1,359–1,437/1,654</td>
<td>wasisi</td>
</tr>
<tr>
<td>* Regent Whistler Pachycephala schlegeli</td>
<td>G cd</td>
<td>- -42</td>
<td>- -/-1,389–1,424/1,654</td>
<td></td>
</tr>
<tr>
<td>* Sclater’s Whistler Pachycephala soror</td>
<td>aGR bcd</td>
<td>3 333</td>
<td>690–1,228 375–906/738–1,402/1,025–1,036</td>
<td></td>
</tr>
<tr>
<td>* Rusty Whistler Pachycephala hyperythra</td>
<td>aDR b</td>
<td>1 -1-</td>
<td>690 671/-/-</td>
<td>wechákab</td>
</tr>
<tr>
<td>Grey Whistler Pachycephala simplex</td>
<td>aDGRS bc</td>
<td>3 43-</td>
<td>271–787 67–906/113–805/-</td>
<td></td>
</tr>
<tr>
<td>Northern Variable Pitohui Pitohui kirhocephalus</td>
<td>aDGRS bc</td>
<td>4 44-</td>
<td>0–1,189 0–802/0–774/-</td>
<td>tok-tök-waras</td>
</tr>
<tr>
<td>* Hooded Pitohui Pitohui dichrous</td>
<td>aGR bcd</td>
<td>4 434</td>
<td>690–1,314 553–906/841–1,262/1,025–1,121</td>
<td>tok-tök-waras</td>
</tr>
<tr>
<td>Brown Oriole Oriolus szalayi</td>
<td>aDRS bc</td>
<td>2 32-</td>
<td>0–558 0–728/0–616/-</td>
<td></td>
</tr>
<tr>
<td>Shining Flycatcher Myiagra electo</td>
<td>[a]DGRS bc</td>
<td>x 11-</td>
<td>x 0/0/-</td>
<td>sororo</td>
</tr>
<tr>
<td>Frilled Monarch Arses telescopthalmus</td>
<td>aDGRS bcB</td>
<td>4 4x-</td>
<td>203–1,208 61–906/113–512/-</td>
<td></td>
</tr>
<tr>
<td>* Fantailed Monarch Symposiachrus axillaris</td>
<td>aGR bcd</td>
<td>3 312</td>
<td>774–1,234 652–906/1,055/1,025</td>
<td>kabik-kabik</td>
</tr>
<tr>
<td>Rufous Monarch Symposiachrus rubiens</td>
<td>- b</td>
<td>- 1--</td>
<td>- 280/-/-</td>
<td></td>
</tr>
<tr>
<td>Hooded Monarch Symposiachrus manadensis</td>
<td>DR b</td>
<td>- 1--</td>
<td>- 219–280/-/-</td>
<td></td>
</tr>
<tr>
<td>Spot-winged Monarch Symposiachrus guttula</td>
<td>aGR bc</td>
<td>3 21-</td>
<td>172–811 290–693/171–738/-</td>
<td></td>
</tr>
<tr>
<td>Golden Monarch Carterornis chrysomela</td>
<td>aDGR bB</td>
<td>3 3-</td>
<td>172–788 219–728/-</td>
<td></td>
</tr>
<tr>
<td>* Black-winged Monarch Monarcha frater</td>
<td>aGR bcd</td>
<td>3 432</td>
<td>689–963 411–906/512–1,250/1,025–1,177</td>
<td>sowéba</td>
</tr>
<tr>
<td>Spangled Drongo Dicrurus bracteatus</td>
<td>aDRS bc</td>
<td>2 33-</td>
<td>0–552 0–750/0–1,018/-</td>
<td>kakasia</td>
</tr>
<tr>
<td>Scientific and English names</td>
<td>Records</td>
<td>Abundance</td>
<td>Altitude</td>
<td>Local names</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>* Pygmy Drongo Chaetorhynchus papuensis</td>
<td>aGR l bcd</td>
<td>3</td>
<td></td>
<td>324</td>
</tr>
<tr>
<td>Willie Wagtail Rhipidura leucophrys</td>
<td>aDS l bc</td>
<td>1</td>
<td></td>
<td>22-</td>
</tr>
<tr>
<td>Black Thicket-Fantail Rhipidura maculipectus</td>
<td>R l -</td>
<td>-</td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>White-bellied Thicket-Fantail Rhipidura leucotorax</td>
<td>DR l -</td>
<td>-</td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Sooty Thicket-Fantail Rhipidura thornorum</td>
<td>aDRS l bc</td>
<td>3</td>
<td></td>
<td>31-</td>
</tr>
<tr>
<td>Rufous-backed Fantail Rhipidura rufidorsa</td>
<td>aDGR l bc</td>
<td>3</td>
<td></td>
<td>32-</td>
</tr>
<tr>
<td>* Black Fantail Rhipidura atra</td>
<td>aG l bcd</td>
<td>4</td>
<td></td>
<td>244</td>
</tr>
<tr>
<td>* Friendly Fantail Rhipidura albolimbata</td>
<td>G l cd</td>
<td>-</td>
<td></td>
<td>43-</td>
</tr>
<tr>
<td>Chestnut-bellied Fantail Rhipidura hypothyra</td>
<td>aR l bc</td>
<td>4</td>
<td></td>
<td>41-</td>
</tr>
<tr>
<td>Northern Fantail Rhipidura rufiventris</td>
<td>aDGRS l bcd</td>
<td>4</td>
<td></td>
<td>321</td>
</tr>
<tr>
<td>Grey Crow Corvus tristis</td>
<td>aDGRS l bc</td>
<td>2</td>
<td></td>
<td>32-</td>
</tr>
<tr>
<td>Torresian Crow Corvus orru</td>
<td>aDS l bcB</td>
<td>2</td>
<td></td>
<td>22-</td>
</tr>
<tr>
<td>* Greater Melampitta Megalampitta gigantea</td>
<td>aR l bcd</td>
<td>3</td>
<td></td>
<td>331</td>
</tr>
<tr>
<td>* Trumpet Manucode Phonygammus keraudreni</td>
<td>aDGRS l bd</td>
<td>4</td>
<td></td>
<td>44-</td>
</tr>
<tr>
<td>Crinkle-collared Manucode Manucodia chalybatus</td>
<td>aDGRS l bcd</td>
<td>3</td>
<td></td>
<td>432</td>
</tr>
<tr>
<td>Glossy Manucode Manucodia ater</td>
<td>aD l bB</td>
<td>2</td>
<td></td>
<td>1--</td>
</tr>
<tr>
<td>Twelve-wired Bird of Paradise Seleucidis melanoleucus</td>
<td>R l B</td>
<td>-</td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Magnificent Riflebird Ptitoris magnificus</td>
<td>aDGR l bcdB</td>
<td>4</td>
<td></td>
<td>432</td>
</tr>
<tr>
<td>* Black-billed Sicklebill Drepanornis albertisi</td>
<td>G l bcd</td>
<td>-</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>* Paradigalla Paradigalla sp.?</td>
<td>G l -</td>
<td>-</td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>King Bird of Paradise Cicinnarus regius</td>
<td>aDGRS l bcB</td>
<td>2</td>
<td></td>
<td>21-</td>
</tr>
<tr>
<td>* Magnificent Bird of Paradise Diphylloides magnificus</td>
<td>aDGR l bcd</td>
<td>4</td>
<td></td>
<td>434</td>
</tr>
<tr>
<td>Lesser Bird of Paradise Paradisaea minor</td>
<td>aDGRS l bcd</td>
<td>3</td>
<td></td>
<td>43-</td>
</tr>
<tr>
<td>* Lesser Ground-Robin Amalocichla incerta</td>
<td>- l cd</td>
<td>-</td>
<td></td>
<td>44-</td>
</tr>
<tr>
<td>* Garnet Robin Eurygome rubra</td>
<td>- l cd</td>
<td>-</td>
<td></td>
<td>-11</td>
</tr>
<tr>
<td>* Yellow-legged Flycatcher Kempiella griseiceps</td>
<td>G l b</td>
<td>-</td>
<td></td>
<td>1--</td>
</tr>
<tr>
<td>Olive Flycatcher Kempiella flavirostris</td>
<td>aDR l bcB</td>
<td>1</td>
<td></td>
<td>21-</td>
</tr>
<tr>
<td>* Papuan Flycatcher Decioeca papuana</td>
<td>G l cd</td>
<td>-</td>
<td></td>
<td>12-</td>
</tr>
</tbody>
</table>
Scientific and English names

<table>
<thead>
<tr>
<th>Scientific and English names</th>
<th>Records</th>
<th>Abundance</th>
<th>Altitude</th>
<th>Local names</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Ashy Robin Heteromyias albispecularis</td>
<td>- l cd</td>
<td>- l -44</td>
<td>- l 844–1,437/1,025–1,654</td>
<td></td>
</tr>
<tr>
<td>Black-sided Robin Poecilodryas hypoleuca</td>
<td>aDGRS l b</td>
<td>1 l 3--</td>
<td>457–494 104–579/</td>
<td></td>
</tr>
<tr>
<td>* Smoky Robin Peneothello cryptoleuca</td>
<td>G? l cd</td>
<td>- l -34</td>
<td>- l 1,398–1,437/1,067–1,654</td>
<td></td>
</tr>
<tr>
<td>Banded Yellow Robin Gennaeodryas placens</td>
<td>aGR l bc</td>
<td>4 l 31--</td>
<td>503–1,134 99–820/494/</td>
<td></td>
</tr>
<tr>
<td>* White-faced Robin Tregellasia leptopus</td>
<td>aGR l bc</td>
<td>2 l 431</td>
<td>988–1,247 616–906/923–1,189/1,025</td>
<td></td>
</tr>
<tr>
<td>Barn Swallow Hirundo rustica</td>
<td>a l c</td>
<td>1 l -1--</td>
<td>122 l -/0/-</td>
<td></td>
</tr>
<tr>
<td>Pacific Swallow Hirundo tahitica</td>
<td>aDS l c</td>
<td>2 l -3--</td>
<td>0–122 l -/0/- l yaya</td>
<td></td>
</tr>
<tr>
<td>Red-rumped Swallow Cecropis daurica</td>
<td>a l -</td>
<td>1 l ---</td>
<td>122 l -/-/ l ---</td>
<td></td>
</tr>
<tr>
<td>* Island Leaf-Warbler Phylloscopus poliophalus</td>
<td>aGR l bc</td>
<td>4 l 434</td>
<td>552–1,261 366–906/884–1,314/1,025–1,219</td>
<td></td>
</tr>
<tr>
<td>* Black-fronted White-eye Zosterops atrifrons</td>
<td>aDR l b</td>
<td>4 l 2--</td>
<td>360–787 260–369/-/</td>
<td></td>
</tr>
<tr>
<td>* Capped White-eye Zosterops fuscicapilla</td>
<td>aGR l d</td>
<td>3 l -3--</td>
<td>1,170–1,283 l -/-1,025–1,067</td>
<td></td>
</tr>
<tr>
<td>* New Guinea White-eye Zosterops novaeguineae</td>
<td>- l bcd</td>
<td>- l 4xx</td>
<td>- l 610–905/652–1,194/1,025</td>
<td></td>
</tr>
<tr>
<td>Gray’s Grasshopper-Warbler Locustella fasciolata</td>
<td>D l d</td>
<td>- l -1--</td>
<td>- l -/-1,025</td>
<td></td>
</tr>
<tr>
<td>Metallic Starling Aplonis metallica</td>
<td>aDRS l [c]</td>
<td>2 l -x-</td>
<td>0 l -/x/-</td>
<td></td>
</tr>
<tr>
<td>Singing Starling Aplonis cantoroides</td>
<td>- l bc</td>
<td>- l 13--</td>
<td>- l 0/0/- l kadadér</td>
<td></td>
</tr>
<tr>
<td>Yellow-faced Myna Mino dumontii</td>
<td>aDRS l bc</td>
<td>2 l 21--</td>
<td>0–575 0–274/1,067/1,025</td>
<td></td>
</tr>
<tr>
<td>Golden Myna Mino anans</td>
<td>aDRS l B</td>
<td>1 l ---</td>
<td>69 l -/-</td>
<td></td>
</tr>
<tr>
<td>* Russet-tailed Thrush Zoothera heinei</td>
<td>- l c</td>
<td>- l -2--</td>
<td>- l -/-1,082–1,417/-</td>
<td></td>
</tr>
<tr>
<td>Grey-streaked Flycatcher Musciaca grisigris</td>
<td>a l -</td>
<td>1 l ---</td>
<td>684 l -/-</td>
<td></td>
</tr>
<tr>
<td>Olive-crowned Flowerpecker Dicaecus pectorale</td>
<td>aDGRS l bcd</td>
<td>3 l 212</td>
<td>67–1,207 0–937/1,067/1,025</td>
<td></td>
</tr>
<tr>
<td>Black Sunbird Leptoconha aspasia</td>
<td>DRS l [c]</td>
<td>x l -x-</td>
<td>0 l -/x/- l sisi</td>
<td></td>
</tr>
<tr>
<td>Olive-backed Sunbird Cinnyris jugularis</td>
<td>aDRS l bc</td>
<td>2 l 12--</td>
<td>0–122 l 0/-/- l sisi</td>
<td></td>
</tr>
<tr>
<td>Eurasian Tree Sparrow Passer montanus</td>
<td>a l -</td>
<td>4 l ---</td>
<td>0–122 l -/-</td>
<td></td>
</tr>
<tr>
<td>* Blue-faced Parrotfinch Erythra trichroa</td>
<td>a l d</td>
<td>4 l -3--</td>
<td>546–1,208 l -/-1,025–1,158</td>
<td></td>
</tr>
<tr>
<td>Grey Wagtail Motacilla cinerea</td>
<td>- l d</td>
<td>- l -2--</td>
<td>- l -/-1,025</td>
<td></td>
</tr>
</tbody>
</table>

Unidentified Fakfak Baham names

Bot’n-bódot, bot-no-ráu, b’roa, dibarása, embó, ganggomba, gauwong, gingenés, gvaráre, hágap, hor, iri-iri-tak, jou, ka-aróm, kadua, kambasáre, kawa-kandiri, kendriskom, kilip-kilip, kokowo, kongwongwa, kware, kwá-rong-tuau, kwau, kwiyaras, lis-oros, malington, mia-mia, mitmit, mongoria, muk-mük, n’gwáhen, nimi, paparóyet, paséwa, patatúa, ping, puckwiya, rara, rimen, ruakru, sabu, sambimina, sarap, sausau, sehengádi, serenggrop, siaróp, síbiri, síhibúnim, simovóris, siópmu, sirikapáhini, sialup, sisia, siwon, sopatámi, suane, suatíp, suonet, sup-suópmu, suri, suribiyan, surikabáhen, tarahau, timtimu, towerup-towerup, tua, tuwir-tuwir, ungwérom, wadúma, waminda, weak-weak, wiriri, yiýárop.

Unidentified Kumawa Baham bird names

Krua, kuwatútú, lusútú, manokváu, resin, siringunting.
The authorship of the names of two birds from Réunion

by Edward C. Dickinson & Anthony S. Cheke

Received 13 May 2015

Summary.—A number of endemic birds from Réunion, Indian Ocean, were described and named by Brisson (1760) whose species-group names are unavailable. Some were subsequently the subject of plates in the Planches enluminées (Daubenton 1765–80, Buffon 1770–83). Among them are Réunion Bulbul Hypsipetes borbonicus and Réunion Grey White-eye Zosterops borbonicus. Although the former was attributed to J. R. Forster, 1781, by Rand (1960), both have generally been attributed to J. F. Gmelin, 1789, or, in the case of Zosterops, also to Boddaert, 1783. Here we explore whether both should be credited to Forster, since he validly introduced both names.

The island of Réunion in the Indian Ocean, an overseas ‘Département’, or administrative division, of France, was named the Isle de Bourbon (or Île Bourbon) from 1649 after the patronym of the French royal family of the period. The initial change of name to La Réunion occurred in 1793 when the French Revolution saw the fall of the monarchy. French settlers had by then been on the island c.130 years, having been brought there by the French East India Company. The name Réunion became permanent only after 1848 when the Second Republic replaced the restored French monarchy which, in 1814, had followed the final defeat of Napoleon Bonaparte (Toussaint 1972).

Prior to French settlement the island was known to the Portuguese, reputedly as early as 1507, and the group of islands that includes Réunion is known as the Mascarenes, taking its name from its Portuguese supposed discoverer (Dom Pedro Mascarenhas). Although previously uninhabited, the islands were apparently known to Arab mariners whose maps aided the Portuguese (North-Coombes 1980).

The species-group epithet borbonica or borbonicus—which did not appear in the Systema naturae of Linnaeus (1758, 1766)—was employed by four authors in the period 1781–90 (Forster 1781, Boddaert 1783, Gmelin 1789, and Latham 1790) all or almost all apparently based on material known to Brisson (1760). The source given by Brisson (1760) on p. 294 of vol. 2 of his Ornithologie was a M. de Lanux¹ who had sent specimens of several Réunion species to Réaumur (Cheke 2009) and whose important collection held at a museum in Rue de la Roquette, Paris, was discussed by Stresemann (1952). As Stresemann reported, following Réaumur’s death in October 1757, the king ordered the collection be transferred to the Cabinet du Roi (the ‘galerie d’oiseaux’), managed by Buffon. Buffon then instructed Martinet, who had provided the black-and-white illustrations for Brisson’s book, to paint every species in colour, which was performed under the direction of Daubenton, and the Planches enluminées (Daubenton 1765–80) began to appear in 1765 (Schmitt 2007). The Planches bore names in French that correspond to those used by Brisson (1760). In his texts relating to the illustrations in the Planches Buffon (1770–83) sometimes used different French names, e.g., renaming Brisson’s ‘Figuier de l’île Bourbon’ as ‘Petit simon’ from contemporary local Réunion usage (Cheke 2009). Schmitt (2007) reproduced the complete set of the Planches with modern identifications, although a few are uncertain or incorrect, notably, in the context of this note, figs. 705 and 681.

¹ Jean Baptiste François de Lanux (1702–72), colonial administrator and amateur naturalist (Lacroix 1936).
Brisson’s work included scientific names in Latin, but it was not consistently binominal and, while some genus-group names from his work are accepted, names he used for species must be attributed to later authors (see Direction 16, ICZN 1955, and Direction 105, ICZN 1963). Linnaeus (1766) incorporated only a proportion of the species that Brisson newly described. Thus the four authors mentioned above had the opportunity to list the others. Of these four, Boddaert’s work is concerned solely with identifying the species depicted by Martinet in Daubenton’s *Planches enluminées*.

Sherborn (1902) reported use of the adjectival name *borbonicus*, -a in zoology prior to 1801; in connection with birds listing ten names in seven genera, three being named identically by two different authors. These were: ‘Pennant in Forster’ (1781) *Motacilla borbonica* [now *Zosterops borbonicus*, see below], *Turdus borbonicus* [now *Hypsipetes borbonicus*]; Boddaert (1783) *Certhia borbonica* [now *Zosterops borbonicus*, see below]; Gmelin (1788–89) *Certhia borbonica* (p. 471), *Emberiza borbonica* (p. 886), *Hirundo borbonica* (p. 1017), *Motacilla borbonica* [sic] (p. 981), *Muscicapa borbonica* (p. 939), *Turdus borbonicus* (p. 821); and Latham (1790) *Sylvia borbonica* [now *Zosterops borbonicus*].

Two earlier names based on the same island, *Loxia bourbonnensis* and *Muscicapa bourbonensis* [sic] were listed by Sherborn and attributed to P. L. S. Müller (1776)—an author whose spelling is apparently best rendered P. L. Statius Muller (see Kooiman 1950).

The *Planches enluminées* included depictions of three other species listed by Boddaert, but for which he did not provide a scientific name. One, the ‘Gobemouche huppé de l’Isle de Bourbon’5, in pl. 573 (fig. 1), was named by Statius Muller; the other two, the ‘Hirondelle brune de l’Isle de Bourbon’6 depicted in pl. 544 (fig. 2), and the white-eye, the ‘Figuier de l’Isle de Bourbon’ in pl. 705 (fig. 2), were named by Gmelin, who also named the gobemouche, creating a synonym for Statius Muller’s name.

Unfortunately, the rather rare work by Forster (1781) has been widely overlooked. This book originated as the first part of a projected work by Thomas Pennant8 on Indian zoology, published in 1769 with just 12 plates (Pennant 1769). The project was then abandoned and the plates, including three unpublished ones, presented to Johann Reinhold Forster (see Zimmer 1926). Forster added a new essay and amplified Pennant’s descriptions in his main text (see Pennant 1779 as quoted by Elliott 1877). Forster also added an appendix entitled *Specimen faunulae Indicae*, which he attributed to ‘autore Thoma Pennant Armigero R.S.S.’, hence Sherborn’s attribution ‘Pennant in Forster’ mentioned above. Allen (1908) considered this appendix to have been written by Pennant, but cannot have read Pennant (1779)9 who, writing of Forster, stated that ‘he added several notes and at the end presented his readers with a *Faunula* of the quadrupeds and birds of the extensive region of India and its Islands’. Hence Forster clearly falsely attributed his own *Faunula* to Pennant, no doubt in homage,

2 See Stresemann (1952).
3 Currently, respectively, *Zosterops borbonicus*, ‘*Foudia bruante*’ (Statius Muller 1776) = *F. madagascariensis* (Linnaeus, 1766; see Cheke 1983), *Phedina borbonica* (J. F. Gmelin, 1789), *Z. borbonicus* (again), a synonym of *Terpsiphone bourbonnensis* (Statius Muller 1776), a synonym of *Hypsipetes borbonicus* (Forster 1781)—see below.
4 Now respectively a synonym of *Serinus alario* Linnaeus, 1758 (from southern Africa not Réunion, see Hellmayr 1938, Cheke 1983), and *Terpsiphone bourbonnensis*.
5 Now *Terpsiphone bourbonnensis* (Statius Muller, 1776).
6 Now *Phedina borbonica*.
7 Discussed below in relation to *Zosterops borbonicus*.
8 Pennant was responsible for the text; the cost of the plates he shared with Sir Joseph Banks and Gideon Loten.
9 Hume (1878) noted that the Preface is dated 1791 and implied that the title page was given an early date. Hume’s questions about the names found in Pennant (1769) were answered by Newton (1879) who listed the names from the 12 plates (1–11 + 13).
despite it including many species well outside the geographical scope of Pennant’s original
descriptions and plates. As recognised by Elliott (1877), Forster, not Pennant, should be
accepted as author of the Faunula. Pennant’s repudiation of his authorship of the Faunula
was missed by Zimmer (1926) and by Wood (1931).

Forster’s work seems to have been checked by Rand (1960) who, treating the Réunion
Bulbul or Merle Hypsipetes borbonicus, gave its original combination as Turdus borbonicus
J. R. Forster (1781)10 and below that listed its re-use by Gmelin (1789), perhaps signalling
that historically Gmelin had been credited. This was accepted by Dickinson (2003), but
not by Safford & Hawkins (2013) who reverted to the use of Gmelin (1789). However, in
the course of resolving the more complex issue dealt with below, Forster’s work has now
been examined and therein, on p. 41 he lists ‘Turdus Borbonicus Br. II. 293’. By inclusion
of an indication of the source reference, wherein there is a description, this meets the
requirements of Arts. 11–12 in the International code of zoological nomenclature (ICZN 1999).

sustained the attribution to Forster, again without checking, because the differing treatment
by Safford & Hawkins (2013) was initially overlooked. However, as explained above,
Forster’s introduction of the name was valid and he must be recognised as the author.

Arising from this finding there appeared to be a related issue: the authorship of the
name of the white-eye from Réunion Zosterops borbonicus. Moreau (1967), like Gadow
(1884), attributed the name to Gmelin (1789) whose original combination he gave as
Motacilla borbonica, although Gmelin’s actual spelling, generally considered a typographical
error11, was burbonica. Dickinson (2003) retained that attribution. However, Cheke (1983)
and Safford & Hawkins (2013), concurring with Sherborn (1902), attributed the name to
Boddaert (1783), while acknowledging that the name was usually attributed either to
Gmelin (1789) or (Safford & Hawkins) to Forster (1781). After checking Boddaert’s work,
Dickinson & Christidis (2014) agreed with the attribution to Boddaert, having sought to
satisfy themselves that the source used by both Boddaert and Gmelin was Brisson (1760).

Brisson’s material was the same as that painted by Martinet for many of Daubenton’s
Planches enluminées, thereby permitting Dickinson & Christidis (2014) to consider that the
implicit type material (i.e. the original specimens) must have been the same. They did not
realise, however, that Boddaert, as already discussed by Cheke (1983), had named his bird
from Daubenton’s pl. 681 fig. 2, using a different specimen probably from another source
(Cheke 2009), and that Boddaert’s original combination was Certhia borbonica with the
French name ‘Souimanga de l’Île de Bourbon’.

In contrast, Gmelin’s name is clearly based on Buffon’s ‘Petit Simon’, which is depicted
in fig. 2 of pl. 705 of the Planches enluminées, still entitled ‘Figuier de l’Isle de Bourbon’ as
named by Brisson. Thus Gmelin’s name is not based on the same material as Boddaert’s
name and when placed in Zosterops is a junior homonym. Boddaert himself mistook pl. 705
fig. 2 for a Linnean species, ‘Motacilla dominica’, which is why he did not give it a new name.

Réunion White-eye is curious in that it is subject to remarkable local plumage variation
referred to by Safford & Hawkins as ‘clinal colour morphs’, based on which Hartlaub (1877)
described a population from Nez de Boeuf at 2,100 m and Storer & Gill (1966) named two
other populations: one from sea level and another from 1,500 m. Given the complex nature

10 Note that Rand did not credit the name to ‘Pennant in Forster (1781)’, either having read Elliott (1877) or
expecting that the forthcoming International code of zoological nomenclature, published in 1961, would give
credit to the person who published the name and that Forster was that person.

11 Gmelin spelt borbonicus/ca correctly in five other cases (see above, Sherborn’s list), hence everyone, from
early on—e.g. Lamouroux & Desmarest (1824–30)—has treated ‘burbonica’ as a typographical error, which is
justified by the internal evidence in Gmelin’s work.
of this variation (Gill 1973, Milá et al. 2010), these names are not now accepted as relating to identifiable subspecies. The two plates in the *Planches enluminées* discussed above represent different colour morphs.

Neither Boddaert’s not Gmelin’s names pre-date Forster (1781), where he was the first to introduce the name *Motacilla borbonica*. He gave a clear indication on p. 41 that he based this on Brisson, vol. 3: 510, where Brisson called this white-eye species *Ficedula borbonica* and Le Fugier de l’Isle de Bourbon. The original specimen was the subject of pl. 28 fig. 3 in Brisson’s work, and, as mentioned above, subsequently of pl. 705 fig. 2 in the *Planches enluminées*. Thus Gmelin’s name is a repetition of Forster’s, based on the same material, and a change of authorship to Forster does not imply a change of type material. The correct names for the two species under discussion are thus:

Réunion Bulbul *Hypsipetes borbonicus* (J. R. Forster 1781)
Réunion Grey White-eye *Zosterops borbonicus* (J. R. Forster 1781).

Acknowledgements

We thank Les Christidis, Roger Safford, an anonymous reader and two referees for their helpful comments on a draft of this article. Scientific nomenclature in this paper has been reviewed by the Working Group on Avian Nomenclature of the International Ornithologists’ Union.

References:

Forster, J. R. 1781. *Indische zoologie oder systematischer Beischreibungen sel tener und bekannter Thiere aus Indien, mit 15 illuminierten kupfertafeln erläütert*. Halle.

Ornithologie: restriction to certain portions of that work of the validation granted under the Plenary
Kooiman, W. J. 1950. Philippus Ludovicus Status Muller. Earebondel ta de tachtichste jierdei fan Dr. G. A.
Lacroix, A. 1936. Notice historique sur les membres et correspondants de l’Académie des Sciences ayant
travailé dans les colonies françaises des Mascareignes et de Madagascar au XVIIIe siècle et au début du
Milá, B., Warren, B. H., Heeb, P. & Thébaud, C. 2010. The geographic scale of diversification on islands:
genetic and morphological divergence at a very small spatial scale in the Mascarene grey white-eye
Comp. Zool., Cambridge, MA.
mise à point. Service Bureau, Port Louis.
Sherborn, C. D. 1902. Index animalium sive index nominum quae ab A.D. MDCCLVIII generibus et speciebus
Gabriel Nicolaus Raspe, Nurnberg.
Stresemann, E. 1952. On the birds collected by Pierre Poivre in Canton, Manila, India and Madagascar
Wood, C. A. 1931. An introduction to the literature of vertebrate zoology based chiefly on the titles in the Blacker
Library of Zoology, the Emma Shearer Wood Library of ornithology, the Bibliotheca Osleriana and other libraries

Addresses: Edward C. Dickinson, Flat 3, Bolsover Court, 19 Bolsover Road, Eastbourne, East Sussex, BN20 7JG, UK, e-mail: edward@asiaorn.org. Anthony S. Cheke, 13 Hurst Street, Oxford OX4 1HE, UK.
An early description and illustration of Blue Mountain Vireo *Vireo osburni*

by Catherine Levy

Received 15 June 2015

Summary.—An early description and illustration of Blue Mountain Vireo *Vireo osburni*, dating from the 1760s, were located in a manuscript held in the Institute of Jamaica. The text and illustration pre-date (by almost 100 years) the original description published in 1861, when the species was named *Laletes osburni*. The species posed a problem for taxonomists until 1934, when James Bond proposed that it be treated as a *Vireo*, where it has remained ever since. I describe those features that accurately identify the early description to species.

Jamaica’s endemic Blue Mountain Vireo *Vireo osburni* was described in 1861 by Sclater and named for Lieutenant W. Osburn, RN, who collected four specimens in the parish of Trelawny. However, recently examined 18th-century folios, *The natural subjects of Jamaica* by Dr Anthony Robinson, include an illustration and a description of *Vireo osburni*. Robinson’s account pre-dates the formal taxonomic description by nearly 100 years and probably is the first-ever narrative account and illustration of the species.

Robinson was a well-trained botanist as part of his professional medical training. Although the date of his birth is unknown, it was probably c.1719 as Thomas Thistlewood (1721–86) wrote ‘He was not much older than me’ (Thistlewood 1750–86). However, Robinson died in 1768 leaving copious, disjointed notes, which were then transcribed and placed into some order by Robert Long in 1769, as noted on the manuscript: ‘This [is a] faithfull transcript of Mr. Robinson’s loose unconnected and detached papers, by Rt. Long, who has revised the whole and corrected the errors of copyists thro-out. Septr., 1769. Anthony Robinson Chirurgeon formerly of Sunderland by the Sea in Durham but lately of Jamaica MS vera Copia corrigata de Roberto Long Armxx’. As Edward Long (1789) recorded, Robinson died while undertaking further natural history research: ‘it was in attempting to perfect the discovery of a tree balsam, analogous in quality to the celebrated balsam of Mecca, that he underwent a fatigue so excessive as to occasion the disorder of which he died.’

Information from the manuscripts was used by several authors in the 18th and 19th centuries, e.g., Edward Long in *The history of Jamaica* (1774), Dr Dancer in *The medical assistant* (1801), Lunan in *Hortus Jamaicensis* (1814) and Bridges in *The annals of Jamaica* (1827). Subsequently, they were consulted by P. H. Gosse who clearly trusted Robinson to be a reliable natural historian. In his Jamaican diary, Gosse (1844–46) recorded that he was able to borrow Robinson’s manuscripts from the (now defunct) Jamaica Society of Arts, via the goodwill of Richard Hill. Although Gosse did not encounter *Vireo osburni* while in Jamaica, readers familiar with his *Birds of Jamaica* will recognise Robinson’s name as Gosse quoted extensively from his notes.

Subsequent to their use by Gosse, the manuscripts disappeared, only to reappear in 1879 in the newly formed Institute of Jamaica. In 1920, at the request of William Fawcett, Director of Public Gardens in Jamaica (1887–1908), those folios containing botanical information, along with the illustrations, were loaned to the British Museum (Natural
History), London, to assist with the preparation of Fawcett & Rendle’s *Flora of Jamaica*. The volumes were returned to the Institute of Jamaica in 2009.

Those volumes of Robinson’s notes sent to the British Museum (Natural History) were nos. 1, 2, 4, 5, together with a small unnumbered volume (apparently there was no vol. 3), and two large volumes of botanical illustrations. Lying unnoticed in the National Library of Jamaica was a large folio of 162 bird illustrations and a manuscript of notes. The illustration (Fig. 1) of *Vireo osburni* is in MS 178 vol. 1, no. 88 in the National Library of Jamaica. The text, however, is in a volume loaned to the British Museum, MSS. 090 ROB, vol. 5, book 3, now in the Natural History Museum of Jamaica. All of the bird illustrations are mounted on 53 × 35.56 cm board, a few covering the entire space, some painted, and others unfinished or only sketched. There are 162 illustrations, approximately 125 executed by Robinson, some by E. Long (acknowledged with Robinson’s assistance), some by A. Mackey and 11 by Andrew Peter Dupont (d. 1770).

Robinson’s description

Robinson did not assign a species name to the bird because he did not recognise it in existing sources to which he had access, e.g. Linnaeus, Sloane, Edwards, Browne and Catesby, but assigned it to the genus *Lanius*, reflecting the shrike-like bill of his unknown bird.

‘This bird weigh’d 5 drachmas 24 Gr**ms**. The extended Wing nine Inches & half, the closed Wing 3 inches. The Beak six-eighths of an Inch long & a half & moderately arcuated [curved]. The upper Mandible had a narrow Ridge between the Nostrills and a Dent on each Side near the Tip. The Nostrills were two small oval Apertures having no Seta about them. The Base of the Beak as in the Baristi [tyrannids] or Loggerhead Genus.

The Toung sagittated and lacerated. The Tail has ten equal Feathers of a brownish blue edged with green. Beneath of a whitish green where all the Shafts were white. The Throat, Breast, and Belly Sides and Anals were of a dull yellow. The Thighs greenish yellow. The Quill plumes resemble’d those of Tail in color. The Rump, Back, Coverts, and Neck’s hind part were dull green as was the Head except its being of a duller hue. The Legs were barely 3/4 of an Inch long. The Back Toe has a narrow membrane on each side and the Middle Toe adher’d to the outer from the first to the second joint. The Legs were cover’d with pale Leaden color’d Scales and the Feet with white ones. This is a true Species of the Lanius or Butcher Bird and the only one of the kind I have ever seen in Jamaica. I had it from Miss Elizabeth Baker my very good Friend Mr. Baker’s Daughter. One of her Negro Boys knocked it down with a stone near Chestervale in New Liguanea Mountains. The Eyes were small I know not of what color the Irides. The Head large more elevated than those of the Baristi whose Heads are broad and depressed.’

The vireo illustration, cut from its original paper, measures 20.64 × 18 cm, and is painted in watercolours with fine pen strokes. The label is 2.86 × 11.43 cm and reads ‘Lanius superne virescente inferne flavo. See posth. M.S. under omissions’. There is a very small diamond shape measuring 0.476 × 1.9 cm pasted onto the label, which was apparently added by Robert Long, who had the notes transcribed and Robinson’s illustrations assembled.

On the reverse side of each illustration is written the species name, no. 88 being labelled *Laletes osburni*. These were evidently added in the latter part of the 19th century as some corrections are in the hand of ornithologist Edward Newton, Lieutenant-Governor and
Colonial Secretary in Jamaica, 1877–83. It is probable that this is whom Cockerell (1894) was referring when he wrote ‘not long ago it was debated whether the ornithological observations (of Robinson) should not be issued by the Institute, accompanied by a selection from the colored drawings. This project after consultation with an experienced ornithologist was abandoned.’

It is obvious that Robinson received the bird some time after it had been collected and did not observe it alive as he noted that he was unable to discern the colour of the iris, and...
recorded that the ‘eyes were small’. On the contrary, in life, the eyes are relatively large, and the iris is brown. Furthermore, the length of the wings compared to the tail and the apparently short outer primary, plus the accurate description of the bill, and the plumage colours are unmistakably those of *Vireo osburni*. Additional evidence that he did not see the bird alive is that the ‘jizz’ of the bird in the illustration is quite unlike the species’ usual posture, which is more hunched and rarely stretched upwards like Robinson’s illustration.

Osburn’s description (1859)

Lieutenant W. Osburn, RN, visited Jamaica and collected birds in 1859–60. Having read Gosse’s *The birds of Jamaica* and *A naturalist’s sojourn in Jamaica*, Osburn communicated several observations that he considered of interest. In a letter to Gosse, subsequently published in *The Zoologist* (1859), Osburn mentioned a bird not described in any of his books: ‘A second bird, rather abundant in this district, and not included in your list, is a sober-suited olive-coloured little fellow, that keeps pretty much to the higher branches of lofty trees, though I have not unfrequently met with it on less elevated positions. From its strong, compressed, deeply toothed bill [cf. Fig. 2], I was at first inclined to suppose it might belong to Mr. Swainson’s extensive genus *Thamnophilus* [antshrikes]; but better acquaintance with its habits and structure has convinced me that it should probably be classed among his *Ampelidae* [waxwings], and somewhere near *Pteruthius* [Old World shrike-babblers] perhaps, though I am unable to refer it satisfactorily to any of his genera …’.

‘…the head is a gray dubious olive, which becomes greener on the back. The quills and tail smoky black, with olive edges and the under parts dingy yellow. But its chief characteristics are the disproportionate size and thickness of the head, which seems only owing to the arrangement of the feathers, for it would not be suspected from the dried skin…. The gray-blue of the beak is singularly in contrast with the prevailing tints of the plumage. The bird is tame and fearless, and, if perching low, may be easily approached; and is another of the lovers of profound solitude in the forest… They hunt insects with considerable bustle. It will give an idea of their movements if I add that on shooting them at great heights I mistook, before firing, one of them for *Vireosylvia*, and the other for *Sylvicola pharetra* [Arrowhead Warbler *Setophaga pharetra*]… The stomachs contained several large seeds, a plant-bug, elytra of beetles, &c.’

Sclater’s description (1861)

Osburn died in Jamaica, but his brother Henry sent the collection of birds to P. L. Sclater of the British Museum, who published the type description of the new genus and species, *Laletes osburni* (see also Fig. 3). Sclater’s (1861) account reads: ‘Mr. Osburn’s collection contains four examples of this bird, labeled ‘Olive Chatterer’ and obtained at Freeman’s Hall, Trelawny, in the months of January and April 1859. Comparing it with *Vireo flavifrons* [Yellow-throated Vireo], which it exceeds by rather more than half an inch in total length, we find the beak more compressed and Shrike-like, and nearly similar to that of *Vireolanius pulchellus* [Green Shrike-Vireo], only shorter. The wings are much shorter in proportion than *Vireo flavifrons*, and the first spurious primary if well developed, measuring about three-quarters of an inch from its insertion.’

It is noteworthy that independently of Robinson’s 18th-century notes which he could not have examined, Sclater also described the bill as ‘shrike-like’. His description reads ‘rostrum altius, fortius, compressius quam in *Vireolanius*. Furthermore, in describing the
Catherine Levy

bird, Sclater remarked ‘remige externo spurio presente’, as also noted by Baird (1864). In Robinson’s illustration the ‘spurious’ primary is clearly visible (Fig. 1, cf. Fig. 4).

Vireo osburni

Vireos had not been described in Robinson’s lifetime. Linnaeus first designated them ‘Muscicapa’ (flycatchers) because ‘Lanius’ was occupied. Vieillot (1807) introduced Vireo as a genus name, using it for *Vireo flavifrons*. As he emphasised, Sclater (1861) did not believe *osburni* belonged to this genus, ‘*Laletes genus novum* Vireonidarum, *inter* Vireonem et Vireolanium medium.’

Thereafter, Albrecht (1862) translated Sclater’s account into German, while Gray (1869) referred to it as *Cylcarhis Osburni*. Baird (1864) described the family Vireonidae (one of the three dentirostral families, the others being Ampelidae and Laniidae) writing ‘The essential features of this family appear to consist in the combination of the dentirostral bill, notched in both mandibles; the ten primaries... of which the outer is usually from one-fourth to one-half the second; the rather short, nearly even tail with narrow feathers, and the great amount of adhesion of the anterior toes...’ Subsequently, Cory (1886) again treated the species under the name *Laletes osburni*, as did Ridgway (1904). However, Bond (1934) proposed that *osburni* is a *Vireo*, in which genus it has remained since. He remarked, ‘It is my opinion that *Laletes* is merely the Jamaican representative of a group of Antillean vireos, its closest relative being *V. gundlachi* [Cuban Vireo] of Cuba.’

Distribution

Robinson’s specimen (now lost) was taken near Chestervale, St. Andrew, (c.1,070 m) in the Blue Mountains, but the species is not restricted to this region or to higher altitudes, as noted by Lack (1976). *V. osburni* is widespread in moist forest (e.g. Cockpit Country, Mount Diablo and the Blue and John Crow Mountains), and has been observed at lower altitudes, such as Windsor, Trelawny (110 m). During data collection for the Important Bird Areas Programme, the largest concentration of *V. osburni* was in core Cockpit Country, where counts were nearly double those in the Blue Mountains, followed by Litchfield Mountain / Matheson’s Run (eastern Cockpit Country), the John Crow Mountains, Mount Diablo and western Cockpit Country. Thus, the name ‘Blue Mountain Vireo’ will confuse those visiting or living elsewhere in Jamaica. Osburn collected it in Trelawny, one of the centre-west parishes of Jamaica—the location of the type specimens, not in the Blue Mountains in the east of the island. Bond (1936) said it was ‘Confined to high elevations (above 1500 ft.) in Jamaica. Most numerous in the Blue Mountains.’ One presumes that Bond, in visiting Jamaica, saw the bird more commonly in the Blue Mountains, or perhaps he did not visit other areas as frequently.

Conclusion

It is little wonder Robinson had difficulties assigning a name to this enigmatic bird. As long ago as 1894, T. D. A. Cockerell (then curator of the Natural History Museum of Jamaica) said of Robinson’s manuscripts and illustrations, ‘Had these descriptions been published when Dr. Robinson wrote them, their value would have been very different’.

Acknowledgements

I acknowledge Dr James Wiley for a critical reading of the submitted version of this paper and for many valuable suggestions, as well as an anonymous reviewer for other pertinent comments and the editor for helpful advice. I thank the Natural History Museum of Jamaica and its staff for providing me with access to the manuscripts, and the National Library of Jamaica for permitting reproduction of Robinson’s illustration.
I am grateful to Dr Susan Koenig of Windsor Research Centre who provided information and made suggestions, and to Dr Robert Prŷs-Jones, Natural History Museum, Tring, who assisted with information on specimens. I am grateful to Paul Jones for providing a photograph.

References:
Cory, C. B. 1886. The birds of the West Indies, including the Bahamas Islands, the Greater and the Lesser Antilles, excepting the islands of Tobago and Trinidad. *Auk* 3: 187–245.
Thistlewood, T. 1750–86. Jamaican journal compiled between 1750 and 1786. Monson MSS. 31/19, May 12, 1768. [Lincolnshire County Archives, Lincoln.]

Address: 2 Starlight Avenue, Kingston 6, Jamaica, West Indies, e-mail: bluequit@gmail.com
Bulweria petrels off the Comoros, south-west Indian Ocean

by Hadoram Shirihai & Vincent Bretagnolle

Received 17 January 2015

During pelagic work to study ‘Mohéli Shearwater’ Puffinus persicus temptator (Shirihai & Bretagnolle 2015), on 4, 5 and 8 November 2014, HS conservatively estimated the presence of 130 individuals of a Bulweria petrel off the Comoros, with max. 48 on 8 November, between Grande Comoro and Mohéli (at c.12°01’S, 43°43E), and another 16 between Mohéli and Anjouan and north of Anjouan on 9 November. This petrel was the fourth most abundant seabird observed, after Brown Noddy Anous stolidus, Sooty Tern Onychoprion fuscatus and Mohéli Shearwater.

As noted by Zonfrillo (1988) the two Bulweria, Bulwer’s B. bulwerii and Jouanin’s Petrels B. fallax are clearly separated in biometrics, with the latter larger and heavier. Although the Comoros Bulweria appeared closer in size to B. fallax, we refrain from making a specific identification, as HS considered them to be smaller than other B. fallax he has seen. The relative location of the Comoros, with sea surface temperatures of 25°C, also better fit B. fallax (known to breed on Socotra, and possibly on the Arabian mainland). They were not B. bulwerii, which occurs over colder, more southerly waters.

Observations of both Bulweria in the south-west Indian Ocean were summarised by Safford & Hawkins (2013); cf. Ryan et al. (2013) for recent evidence of B. fallax in the eastern Indian Ocean. HS observed two Bulweria (also unidentified to species as size was difficult to estimate, like the Comoros birds) off Mombasa, Kenya, in November 1996. Veit et al. (2007) reported undocumented sightings of several Bulweria identified as Jouanin’s, near Mayotte, from the R/V Marion Dufresne in January 2003. In October 2008, Morris (2008) photographed Bulweria off the Comoros similar to those we describe here, which he hesitantly identified as B. bulwerii.

Description of birds in November 2014

Size.—Intermediate between the two Bulweria: although apparently clearly larger and longer winged than Bulwer’s, they did not seem as large and heavy as Jouanin’s. This impression was constant. Estimating overall size at sea and from photographs is often subjective, and in strong sunlight over a very calm sea, birds often appear larger than they really are, while most birds were in active moult, which can also make them appear larger. In direct comparison with Mohéli Shearwater these Bulweria usually appeared 5–10% smaller, thus closer in size to Jouanin’s than to Bulwer’s. Only by taking measurements will it be possible to confirm their true overall size. However, despite appearing closer to Jouanin’s, all constantly showed narrower bills than B. fallax (e.g. Figs. 5–8). Among 54 birds observed sufficiently close to check bill size and structure, none showed adult Jouanin’s characteristic large globular bill (typically square-shaped with well-developed plates, including the proportionately huge, bulging maxillary unguis). Nevertheless, Jouanin’s with narrower bills exist (probably females and/or fledglings), and it is possible that Comorian waters harbour mostly narrow-billed Jouanin’s.

Flight.—In our experience, Jouanin’s makes typically slower and more effortless progress than Bulwer’s. Compared to the latter, Jouanin’s has longer and more ‘elastic’ wings producing longer glides, with slower / fewer wingbeats producing less ‘bouncy’ and
Figures 1–4. Unidentified *Bulweria* petrels, off Mohéli, Comoros, November 2014, in moult, with severely worn and damaged primary tips, showing two different individuals (Figs. 1–2 = one bird; Figs. 3–4 = second bird); note large flashes of silvery grey with bluish or ashy tone on greater coverts, and overall size estimated to be closer to Jouanin’s (Tubenoses Project & Extreme Gadfly Petrel Expeditions / Hadoram Shirihai)

Figures 5–8. Unidentified *Bulweria* petrels, off Mohéli, Comoros, November 2014, showing three different individuals (Figs. 5–6 = one bird; Fig. 7 = second bird; Fig. 8 = third bird); all 54 birds seen close showed narrower bills compared to typical Jouanin’s, with the thickest example represented by the bird in Fig. 8, the narrowest in Fig. 5–6 and average-sized bill in Figs. 3, 4 and 7; and note striking large silvery grey flashes with bluish hue on greater coverts (e.g., Fig. 5), and paler underwing-coverts that were present to some degree in most birds, e.g. Fig. 7 (Tubenoses Project & Extreme Gadfly Petrel Expeditions / Hadoram Shirihai)
erratic manoeuvres than Bulwer’s. Again, flight behaviour of the birds off the Comoros appeared closer to Jouanin’s, but perhaps even lighter.

Plumage.—All showed a well-developed pale upperwing carpal (ulnar) bar (on the greater coverts), with some also having pale underwing-coverts forming a vague band. The pale carpal bar constantly appeared (see Figs. 1–5) as large patches of silvery grey or slate-blue with an ashy tone, and was detectable even at some distance. This coloration was present on fresh coverts and was not the result of pale reflections due to feather bleaching and wear, as often seen in very worn Jouanin’s (cf. van den Berg et al. 1991). We already reported slate-blue dorsal pigmentation on Jouanin’s observed elsewhere in the Indian Ocean, including off Réunion (Shirihai et al. 2014: 212). It seems that on some fresh Jouanin’s, and in certain lights, slate or greyish hues can be present on the greater coverts, despite not being described in most of the general literature (e.g. Harrison 1987, Marchant & Higgins 1990, Brooke 2004, Onley & Scofield 2007, Porter & Aspinall 2010), but are usually smaller in area, duller and less contrasting than the petrels observed off the Comoros. Of 84 photographs of *B. fallax* on the internet (e.g. (www.uaebirding.com/index.html, www.mike-barth.blogspot.ch/2012/11/jouanins-petrel-fest.html, www.birdsoman.com/Birds/011-Petrels/JouaninsPetrel/JouaninsPetrel.htm), only three showed similar bluish-grey coloration on fresh greater coverts, all off United Arab Emirates in November 2012 (K. Al Dhaher, O. Campbell & M. Barth).

HS was unable to photograph the very few fresh, recently fledged juveniles he observed, which were aged by their evenly fresh remiges, with no moult limits among the upperwing-coverts, while their wings were rounder, as is often the case in juvenile petrels. While the carpal patch was well developed in these birds, unlike their adult counterparts the flashes appeared yellowish buff, not silvery grey with a bluish hue.

Moult timing.—Of 54 birds that were close enough to check for moult, 46 were in various stages of moult, with 3–4 inner primaries, 1–4 secondaries, most greater coverts and some rectrices being renewed or growing; the remaining flight feathers and coverts were strongly worn and bleached, suggesting that they were undergoing complete moult, and thus post-breeding adults. The other eight were fresh fledglings.

Behaviour

The *Bulweria* often fed with Wilson’s Storm Petrels *Oceanites oceanicus* (max. 32, 8 November) just above the continental shelf. The *Bulweria* mostly avoided the boat, and showed weak response to the chum, being rather shy. As a result, only 19 petrels were photographed, and for only six was it possible to secure close images, five of which are included here.

Discussion

The numbers of *Bulweria* reported here are probably among the largest ever recorded in the western Indian Ocean away from Arabia (cf. Safford & Hawkins 2013). We have also described in detail the appearance of a silvery slate-blue upperwing bar (on fresh greater coverts, in all petrels in moult), which was a constant feature of all (non-juvenile) Comoros *Bulweria*, despite being very rarely noted in Jouanin’s off Arabia.

We encourage observers to monitor the frequency and the nature of this character in birds off Arabia, to better understand plumage variation in *B. fallax*. Although estimating overall size at sea is always tricky, the Comoros *Bulweria* were estimated to be nearer Jouanin’s but smaller and lighter, with consistently narrower bills.
The large numbers close to all three islands, especially in the evenings and early mornings around Mohéli or between Mohéli and Grand Comore, may suggest a winter-breeding population of these *Bulweria*. However, because the vast majority of birds were in active moult, our assumption is that they were not local breeders but from elsewhere in the western Indian Ocean.

Published wing lengths of a Bulwer’s Petrel incubating an egg on Round Island, Mauritius, in December 1994 (Safford & Hawkins 2013), and one on Cousin Island, Seychelles, in June 2009 (Andrews & Skerrett 2012), are intermediate between Bulwer’s and Jouanin’s Petrels, albeit closer to upper values of the former (for biometrics, cf. Brooke 2004, Safford & Hawkins 2013). Until Comoros birds can be handled for detailed analysis it will be impossible to confirm their identity. Our findings should stimulate research into *Bulweria* petrels in the western Indian Ocean as whole.

Acknowledgements

Shirihai & Bretagnolle (2015) listed those persons who assisted our work in the Comoros. We also received assistance from the staff of the following museums: P. Capainolo & T. J. Trombone (American Museum of Natural History, New York), C. S. Roselaar (Naturalis, Leiden), and M. Adams (Natural History Museum, Tring). Oscar Campbell and Tommy Pedersen provided images of Jouanin’s Petrel off United Arab Emirates that were used to analyse plumage variation and moult, while Hanne & Jens Eriksen sent images of the species from Oman. G. M. Kirwan improved the manuscript.

References:

Addresses: Hadoram Shirihai, Emek Ayalon 39, Shoham 60850, Israel, e-mail: albatross_shirihai@hotmail.com. Vincent Bretagnolle, CEBC-CNRS, Beauvoir sur Niort, France, e-mail: breta@cebc.cnrs.fr
The status of the name ‘occidentalis’ Chappuis for the Dusky Long-tailed Cuckoo Cercococcyx mechowi

by Robert J. Dowsett & Françoise Dowsett-Lemaire

Received 23 June 2015

Del Hoyo & Collar (2014) mentioned a race occidentalis of Dusky Long-tailed Cuckoo Cercococcyx mechowi Cabanis, 1882. Sinclair & Ryan (2010), in describing the vocalisations of C. mechowi, stated that ‘in C Africa song is faster and more rapidly delivered (may be undescribed species, tentatively named C. occidentalis by C. Chappuis)’. This name is also mentioned on the Avibase website (avibase.bsc-eoc.org/). None of these authors produced a reference in support of Chappuis having made this suggestion in print (A. Elliott, D. Lepage & P. G. Ryan in litt. 2015). Thanks to C. Chappuis himself (pers. comm. 2015), we know that this name was mentioned tentatively (as Cercococcyx mechowi/’occidentalis’) by Chappuis (2000: 7). Chappuis (1974: 215–216) had merely described the vocalisations recorded in Cameroon/Nigeria. On p. 60 of the booklet accompanying his CDs (Chappuis 2000) he described the vocalisations of C. mechowi from north-east Gabon and what he labelled Cercococcyx ‘x’ from south-east Nigeria, thus recognising that this species has different dialects. He mentioned having tried playback in Ghana of the Gabon bird, with no response. Dowsett-Lemaire & Dowsett (2014: 197) pointed out that the Sanaga River in Cameroon is the region where the Upper Guinea dialect is replaced by that of Lower Guinea (cf. Fig. 1).

That there are distinct differences between the songs of this cuckoo in parts of west-central Africa has long been known. Dowsett-Lemaire (1997: 24–28) discussed this problem, and presented comparative sonograms from the Cameroon–Nigeria border (based on Chappuis 1974), Odzala, Congo-Brazzaville (F. Dowsett-Lemaire) and Bwamba, Uganda (Keith & Gunn 1971). We have heard the song of the Upper Guinea population in Ghana (Ankasa and Tano Ofin), Togo (Assoukoko and Bénali) and Cameroon (Kimbi River and Bakossi), and the Lower Guinea population in Cameroon (Ndongo, Boumba-Bek, Nki and Lobéké), Equatorial Guinea (Monte Alen), Congo-Brazzaville (Nouabalé-Ndoki, Odzala

Figure 1. Distribution of Dusky Long-tailed Cuckoo Cercococcyx mechowi, a species essentially of the forests of the Guineo-Congolian biome (heavy shading); open squares represent birds known or suspected to belong to the Upper Guinea population which is vocally distinctive (see text).
and Léfini) and Uganda (Bwamba). In addition, we have listened to recordings from several localities in Uganda (Bwamba south to Bwindi) and one from Ghana (Ankasa) on xeno-canto (http://www.xeno-canto.org, accessed February 2015).

However, no morphological differences are known to exist between the two populations (e.g. Payne 2005; R. B. Payne in litt. 2015). Chappuis (2000: 60) did suggest that birds of the Lower Guinea population (mechowi), with the higher pitched voice, are larger than Upper Guinea birds. Chapin’s (1928) lone specimen from Upper Guinea (Ghana) was smaller than any of his large Lower Guinea sample, but he found no colour differences and this has not been investigated further. Only two forms have ever received names—nominate mechowi (type locality Malange, Angola) and wellsi Bannerman 1919 (type locality Bitye, Cameroon)—and both are within the range of the Lower Guinea population. If morphological or molecular differences were to be found, then it is the Upper Guinea population that would require a new name. But it is clear that ‘occidentalis Chappuis’ is a nomen nudum, and its use should be avoided at present.

Acknowledgements
We thank Claude Chappuis for kindly clarifying this problem, and Andy Elliott, Denis Lepage, Clive Mann, Bob Payne and Peter Ryan for useful discussion.

References:

Address: Le Pouget, Sumène 30440, France, e-mail: Dowsett@aol.com

Appendix: gazetteer of localities mentioned

<table>
<thead>
<tr>
<th>Location</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ankasa, Ghana</td>
<td>05°10’N, 02°39’W</td>
<td></td>
</tr>
<tr>
<td>Assoukoko, Togo</td>
<td>08°01’N, 00°38’E</td>
<td></td>
</tr>
<tr>
<td>Bakossi, Cameroon</td>
<td>05°05’N, 09°43’E</td>
<td></td>
</tr>
<tr>
<td>Bitye, Cameroon</td>
<td>03°01’N, 12°22’E</td>
<td></td>
</tr>
<tr>
<td>Boumba-Bek, Cameroon</td>
<td>02°32’N, 15°05’E</td>
<td></td>
</tr>
<tr>
<td>Bwamba, Uganda</td>
<td>00°32’N, 30°05’E</td>
<td></td>
</tr>
<tr>
<td>Bwindi, Uganda</td>
<td>01°02’S, 29°41’E</td>
<td></td>
</tr>
<tr>
<td>Kimbi River, Cameroon</td>
<td>06°36’N, 10°23’E</td>
<td></td>
</tr>
<tr>
<td>Léfini (Mah), Congo-Brazzaville</td>
<td>03°20’S, 15°30’E</td>
<td></td>
</tr>
<tr>
<td>Malange, Angola</td>
<td>09°32’S, 16°20’E</td>
<td></td>
</tr>
<tr>
<td>Monte Alen, Equatorial Guinea</td>
<td>01°40’N, 10°15’E</td>
<td></td>
</tr>
<tr>
<td>Nk, Cameroon</td>
<td>02°12’N, 14°39’E</td>
<td></td>
</tr>
<tr>
<td>Nouabalé-Ndoki, Congo-Brazzaville</td>
<td>02°12’N, 16°12’E</td>
<td></td>
</tr>
<tr>
<td>Odzala National Park, Congo-Brazzaville</td>
<td>00°36’N, 14°54’E</td>
<td></td>
</tr>
<tr>
<td>Tano Ofin, Ghana</td>
<td>06°40’N, 02°10’W</td>
<td></td>
</tr>
</tbody>
</table>

© 2015 The Authors; Journal compilation © 2015 British Ornithologists’ Club
LIST OF AUTHORS AND CONTENTS

ACEVEDO-CHARRY, O. A., CÁRDENAS, Á., CORAL-JARAMILLO, B., DAZA DÍAZ, W., JARAMILLO, J. & FREILE, J. F. First record of Subtropical Pygmy Owl *Glaucidium parkeri* in the Colombian Andes ... 77

ALBÁN, N. J. See BRINKHUizen, D. M.

ANDERSON, J. Eye colour variation in Rufous-bellied Tit *Melaniparus rufiventris* in western Tanzania.. 98

AVENDAÑO, J. E. See DONEGAN, T. M.

BARRIO, J., GARCÍA-OLAECHEA, D. & MORE, A. The avifauna of El Angolo Hunting Reserve, north-west Peru: natural history notes... 6

BISHOP, K. D. See DIAMOND, J.

BOND, A. L., MCCLELLAND, G. T. W., GLASS, T., HERIAN, K. & MALAN, L. Multiple records of a Red-tailed Tropicbird *Phaethon rubricauda* on Inaccessible Island, Tristan da Cunha ... 190

BRETAGNOLLE, V. See CIBOIS, A.

BRETAGNOLLE, V. See SHIRIHAI, H.

CÁRDENAS, Á. See ACEVEDO-CHARRY, O. A.

CHEKE, A. S. See DICKINSON, E. C.

CIBOIS, A., THIBAULT, J.-C., LECROY, M. & BRETAGNOLLE, V. Molecular analysis of a storm petrel specimen from the Marquesas Islands, with comments on specimens of *Fregetta lineata* and *F. guttata* .. 240

CLAESSENS, O. See INGELS, J.

COOPER, J. H. See TENNYSON, A J. D.

CORAL-JARAMILLO, B. See ACEVEDO-CHARRY, O. A.

COSTA, T. V. V. See DICKENS, J. K.

DAZA DÍAZ, W. See ACEVEDO-CHARRY, O. A.

DECHELLE, M. See INGELS, J.

DEVILLE, T. See INGELS, J.

DIAMOND, J. & BISHOP, K. D. Avifaunas of the Kumawa and Fakfak Mountains, Indonesian New Guinea.. 292

DÍAZ M., H. A. See SHIRIHAI, H.

DICKENS, J. K., COSTA, T. V. V., MACHADO, H. D. F. & FONTCUBERTA, E. First nesting record of Band-winged Nightjar *Systellura longirostris* in Uruguay ... 278

DICKINSON, E. C. & CHEKE, A. S. The authorship of the names of two birds from Réunion 337

DICKINSON, E. C. & RATY, L. The family-group name Claraviinae and its usage 188

DINE, M. See FEARE, C. J.

DONEGAN, T. M. & AVENDAÑO, J. E. ‘Bogotá’ type specimens of the hummingbird genus *Adelomyia*, with diagnosis of an overlooked subspecies from the East Andes of Colombia 195

DOWSETT, R. J. Comments on the ornithology of Nigeria, including amendments to the national list .. 154

DOWSETT, R. J. & DOWSETT-LEMAIRE, F. New avian observations from south-western Ethiopia, with a review of overlooked literature and altitudinal limits .. 224
DOWSETT, R. J. & DOWSETT-LEMAIRE, F. The status of the name 'occidentalis' Chappuis for the Dusky Long-tailed Cuckoo Cercococcyx mechowi .. 352

DOWSETT-LEMAIRE, F. See DOWSETT, R. J.

EDWARDS, H. See FEARE, C. J.

FEARE, C. J., EDWARDS, H., TAYLOR, J. A., GREENWELL, P., LAROSE, C. S., MOKHOKO, E. & DINE, M. Stars in their eyes: iris colour and pattern in Common Mynas Acridotheres tristis on Denis and North Islands, Seychelles ... 61

FEARE, C. J. Synchrony of primary moult in pairs of Common Mynas Acridotheres tristis ... 185

FONTCUBERTA, E. See DICKENS, J. K.

FREILE, J. F. See ACEVEDO-CHARRY, O. A.

FREILE, J. F. See BRINKHUIZEN, D. M.

GARCÍA-OLAECHEA, D. See BARRIO, J.

GLASS, T. See BOND, A. L.

GOURAU, C. List of type specimens of birds in the Baillon Collection (La Châtre, France). Part 1. Non-Passerines ... 131

GREENWELL, P. See FEARE, C. J.

HERIAN, K. See BOND, A. L.

HUME, J. P. Large-scale live capture of Passenger Pigeons Ectopistes migratorius for sporting purposes: overlooked illustrated documentation .. 174

INGELS, J., DECHELLE, M., PELLETIER, V., DEVILLE, T., RIBOT, J. H. & CLAESSENS, O. Status and distribution of Golden-rumped Euphonia Euphonia cyanoccephala on the Guiana Shield, South America .. 284

JACKSON, H. D. Rufous-cheeked Nightjar Caprimulgus rufigena behaviour during the breeding season in Zimbabwe ... 247

KIRWAN, G. M., WHITTAKER, A. & ZIMMER, K. J. Interesting bird records from the Araguaia River Valley, central Brazil, with comments on conservation, distribution and taxonomy 21

LAMBETH, D. See BRINKHUIZEN, D. M.

LAMBETH, G. See BRINKHUIZEN, D. M.

LAROSE, C. S. See FEARE, C. J.

LECROY, M. See CIBOIS, A.

LEVY, C. An early description and illustration of Blue Mountain Vireo Vireo osburni ... 342

MOKHOKO, E. See FEARE, C. J.

JARAMILLO, J. See ACEVEDO-CHARRY, O. A.

MACHADO, H. D. F. See DICKENS, J. K.

MALAN, L. See BOND, A. L.

MCCLELLAND, G. T. W. See BOND, A. L.

MORE, A. See BARRIO, J.

PELLETIER, V. See INGELS, J.

PERPIÑÁN, D. Gravid female birds cannot be determined by visual inspection .. 92

PYM, T. See SHIRIHAI, H.

RATY, L. See DICKINSON, E. C.
RIBOT, J. H. See INGELS, J.

SALAMAN, P. A new subspecies of Three-striped Warbler Basileuterus tristriatus in the Serranía de San Lucas, Colombia 84

SHEPHERD, L. D. See TENNYSON, A J. D.

SHIRIHAI, H., DÍAZ M., H. A. & BRETAGNOLLE, V. A. dark-morph White-bellied Storm Petrel Fregetta grallaria off Más Afuera (Alejandro Selkirk) Island, Juan Fernández archipelago, Chile 87

SHIRIHAI, H. & BRETAGNOLLE, V. The poorly known Mohéli Shearwater Puffinus (persicus) temptator at the Comoro Islands, western Indian Ocean 216

SHIRIHAI, H. & BRETAGNOLLE, V. Bulweria petrels off the Comoros, south-west Indian Ocean 348

SHIRIHAI, H., PYM, T. & BRETAGNOLLE, V. Response to ‘Gravid female birds cannot be determined by visual inspection’ 95

SOLDATO, G. See BRINKHUIZEN, D. M.

SVENSSON, L. A new North African subspecies of Common Chaffinch Fringilla coelebs 69

TAYLOR, J. A. See FEARE, C. J.

TENNYSON, A J. D., COOPER, J. H. & SHEPHERD, L. D. A new species of extinct Pterodroma petrel (Procellariiformes: Procellariidae) from the Chatham Islands, New Zealand 267

THIBAULT, J.-C. See CIBOIS, A.

VAN DER VLIET, R. E. & JANSEN, J. J. F. J. The chequered history of Chattering Kingfisher Todiramphus tutus on Tahiti. II: review of status 121

VAN DER VLIET, R. E. See JANSEN, J. J. F. J.

WHITTAKER, A. See KIRWAN, G. M.

ZIMMER, K. J. See KIRWAN, G. M.
INDEX TO SCIENTIFIC NAMES

All generic and specific names (of birds only) are indexed. New specific and subspecific names are indexed in bold print under generic, specific and subspecific names. Illustrations and figures are numbered in italics.
Amblyornis inornata 294, 298, 314, 321, 331
Amblyornis inornatus 306
amboinensis, Alisterus 329
amboinensis, Macropygia 309, 328
ameriana, Chloroceryle 11
ameriana, Mycteria 9
americanus, Coccylzus 21, 28
americanus, Ibycter 26
Ampelidae 345
anaethetus, Onychoprion 328
anais, Mino 336
analoga, Melipaga 318, 332
Anaplectes rubriceps 168, 238
Anas sparsa 237
Anas superciliosa 311, 327
Andropadus ansorgei 161
Andropadus curvirostris 161
Andropadus gracilirostris 162
angolensis, Sporophila 52
anomalus, Eleothreptus 28
Anous stolidus 218, 348
Anser brachyrhynchus 134
Anser Brachyrhynchus 134
ansorgei, Andropadus 161
ansorgei, Eurillas 161
antarcticus, Stercorarius 190
Anthocephala floriceps 203
anthonyi, Nyctidromus 11, 19
Anthreptes orientalis 234, 237
Anthus cinnamomeus 161, 237
Anthus richardi 154, 161
Anthus trivialis 234, 237
antisiensis, Cranioleuca 12, 17, 19
antoniae, Trochilus 237
Apalis flavida 234
apiaster, Merops 237
Aplonis cantoroides 336
Aplonis metallica 336
Aplophila larvata 237
approximans, Circus 128
Apteryx spp. 92
apus, Apus 237
Apus apus 237
Apus batesi 158
Ardea alba 9
Ardea cocoi 9
Ardea intermedia 237, 327
Ardea melanoleuca 237
Ardea modesta 296, 327
Ardea sibilatrix 131
ARDEA SIBILATRIX 137
Ardea sumatrana 327
Ardenna bulleri 270, 272, 274
Ardeola ralloides 237
ardosiaceus, Falco 237
arfakianus, Aepypodius 311, 327
arfakianus, Sericornis 300, 301, 310, 319, 333
aried, Fregata 218, 327
aristotelis, Phalacrocorax 131, 139
armillaris, Bucco 144
armillaris, Psilopogon 144
armirginiana, Pterodroma 270, 273, 274
arquatrix, Columba 226
Arremon abeillei 14, 18, 19
Arremon aurantirostris 14
Arses telephalminus 308, 334
Artamus leucorynchus 333
Artamus maximus 333
aruensis, Melipaga 318, 332
arudineacens, Acrocephalus 237
Asio clamator 143
Asio otus 237
aspasia, Leptocoma 336
assimilis, Puffinus 221
Astragalinus psaltria 14
ater, Manucodia 335
ater, Melipotes 310, 316
aetrum, Pseudobulweria 95, 270, 272
aetrum, Procosigler 329
aetrum, Rhinopomastus 237
Athene cunicularia 10
Atlapetes albiceps 14, 19
Atlapetes latinuchus 209
Atlapetes leucopterus 14, 18
Atlapetes sebohmi 14, 18
atra, Chalcospiss 329
atra, Rhipidura 308, 335
atra, Ceratogymna 158
aratus, Coragyps 9
atrices, Hypergerus 163
atricilla, Larus 131, 141
Atricilla micropterus 131, 141
atrichons, Zosterops 324, 336
atrothorax, Myrmophylax (Myrmeciza) 35
atirovires, Lalage 333
athis, Alcedo 331
aura, Cathartes 9
aurantiifrons, Ptilinopus 328
aurantiirhinostris, Arremon 14
aurea, Euphonia 286
aurorius, Sericulus 296, 299, 301, 331
auricollis, Primolius 26
auriculata, Zenaida 10
australis, Cethomachoa 226
Aveda subcristata 327
axillaris, Pterodroma 270, 272, 273, 274
axillaris, Symposiachrhus 334
axillaris, Symposiarchus 304, 308, 324
azureus, Ceyx 331
azureus, Coracina 161
azureus, Cyanograulus 161
baboeala, Bradypterus 162, 224, 229, 237
Baeopogon clamans 162
bairdi, Leucippus 11, 15
baglafecht, Plocus 234, 237
bailloni, Procellaria 149
bailloni, Puffinus 149, 216, 218, 220, 221, 223
bailloni, Rallus 131
Bailloni, Rallus 136
bairdi, Calidris 10
bairdi, Myiodynastes 12
barbatus, Criniger 162
baroli, Procellaria 149
Basileuterus trifasciatus 14
Basileuterus tristriatus 84–86
Basileuterus tristriatus sanlucasensis subsp. nov. 84
batesi, Apus 158
Batis erlangeri 154, 165, 228, 230
Batis orientalis 164, 228, 230
Batis perkeo 237
baumannii, Phyllastrephus 162
beccarii, Alopecoenas 300, 301, 310, 328
beccarii, Drymodes 301, 302
beccarii, Sericornis 306, 308–310, 318, 319, 332
becki, Pseudobulweria 95
bellicosa, Sturnella 14
bellicosus, Polemaetus 237
bengalensis, Sterna 142
bengalensis, Thalasseus 142
bengalus, Uraeginthus 169, 234, 238
bennetti, Casuarius 310, 311
bennettii, Aegotheles 314
bergii, Thalasseus 328
bernardi, Thamnophilus 12, 19
bernsteini, Centropus 330
biarmicus, Falco 131, 145, 237
Bias musicus 164
bicolor, Accipiter 9, 15
bicolor, Ducula 329
bicolor, Lamprotornis 61
bicolor, Speculipastor 231
bilophus, Heliactin 30
bimaculata, Peneothello 301–303, 324
bistriatus, Burhinus 131, 140
blainvillii, Peltops 333
blanchoti, Malaconotus 167, 237
Bleda notatus 162
blissetti, Dyaphorophyia 165
bodessa, Cisticola 234, 237
boehmi, Sylvia 237
bonariensis, Molothrus 14
borbonica, Certhia 338, 339
borbonica, Emberiza 338
borbonica, Hirundo 338
borbonica, Muscicapa 338
borbonica, Phedina 338
borbonica, Sylvia 338
borbonicus, Hypsipetes 337–340
borbonicus, Turdus 338
Bubo capensis 237
Bubo Clamator 143
Bubo virginianus 10
Bubulcus ibis 9, 237
Bulloch, Malaconotus 338
Bulloch, Sylvia 338
Bulloch, Zosterops 337–340
Bostrychia olivacea 154, 155
Bostrychia rara 155
bourbonensis, Muscicapida 338
bourbonnensis, Lexia 338
bourbonnensis, Terpsiphone 338
bouvieri, Scotopelia 157
bouvreuil, Sporophila 47, 48, 49
boyeri, Coracina 333
brachyrhynchus, Anser 134
Brachyrhynchus, Anser 134
brachyura, Camaroptera 235, 237
brachyura, Chaetura 11, 30
brachyura, Sylvietta 234
brachyurus, Buteo 10
bracteatus, Dicrurus 307, 308, 324, 334
Bradornis microrhynchus 234
Bradypterus baboecala 162, 224, 229, 237
Bradypterus centralis 229
brasilianum, Glaucidium 52
brasilianus, Phalacrocorax 9
breviceps, Petaurus 314
brevirostris, Lugensa 268, 270, 272
brissonii, Cyanocmpsa 43
Brotoegeris pyrrhoptera 11
bruante, Foudia 338
bruijini, Grallina 301, 302, 310
bruijini, Microspitta 293, 304, 330
Bubo capensis 237
Bubo Clamator 143
Bubo virginianus 10
Bubulcus ibis 9, 237
Bucco armillaris 144
buccoides, Aluroedus 331
buceroides, Philemon 309, 332
buffoni, Circus 25
bulleri, Ardea 270, 272, 274
bullocki, Merops 158
Burhinia 240, 348–351, 349
Burhinia bulwerii 348
Burhinia fallax 348
Burhinia, Bulweria 348
burbonica, Motacilla 338
Burhinus bistrriatus 131, 140
Burhinus senegalensis 225
Burhinus supercilii 10
Burhinus vermicularius 225, 258
Buteo albonotatus 10
Buteo brachyrurus 10
buteo, Buteo 237
Buteo buteo 237
Buteo solitarius 10
Buteogallus meridionalis 148
Buteogallus solitarius 10
Buteogallus urubitinga 9
Butorides striata 9, 327
cabanisi, Emberiza 169
Cacatua galerita 329
Cacatua moluccensis 93
cachinnans, Herpetotheres 11
Cacicus cela 14, 19
Cacomantis castaneiventris 299, 330
Cacomantis flabeliformis 136
Cacomantis merulinus 136
Cacomantis variolosus 330
caerulea, Egretta 25
caeruleogrisa, Coracina 308, 333
caerulescens, Geranospiza 9
caerulescens, Muscicapida 163
caerulescens, Ptilorhina 320, 333
caerulescens, Sporophila 49
caffer, Acrocephalus 129
cahow, Pterodroma 270, 271, 272–274
Caldarella cinerea 160
Caldarella rufescens 154, 160
caledonicus, Nycticorax 327
Calendulauda africanaoides 237
Calendulauda poecilosterna 229, 233
Calidris alba 26, 328
Calidris bairdii 10
Calidris melanotus 131, 141
Calidris minutilla 10, 140
Calidris ruficollis 328
Callieothrus leucopholus 330
Caligavis obscura 301, 302
callonotus, Veniliornis 11, 15, 19
callophrys, Chlorophonia 44
calopterus, Mecocerculus 12
calurus, Criniger 162
calus, Gymnobucco 159
calus, Treron 156
Camaroptera brachyura 235, 237
camerunensis, Vidua 232
Campephilus gayaquilensis 11
Campethera nubica 235
Campylorhynchus fasciatus 13, 16, 19
candicans, Eleothreptus 28, 261
canorus, Cuculus 237
cantzans, Cisticola 234, 237
cantillans, Mirafra 160, 237
Cantorchilus superciliaris 13, 18
cantoroides, Aplonis 336
capensis, Bubo 237
capensis, Pternistis 134
capensis, Zonotrichia 14
capicola, Streptopelia 237
Caprimulgus climacurus 261
Caprimulgus donaldsoni 226, 235, 237
Caprimulgus europaeus 247
Caprimulgus fossii 247
Caprimulgus inornatus 247
Caprimulgus macrurus 296, 330
Caprimulgus natalensis 247
Caprimulgus pectoralis 247
Caprimulgus rufigena 247–266, 255
caprius, Chrysococcyx 157
Caracara cheriway 11
Carbo cormoranus 138, 139
Carbo desmarestii 131, 139
Carbo macrorhynchus 138
carbo, Phalacrocorax 131, 138, 139
carolae, Melipotes 310, 316
Carterornis chrysomela 308, 334
cassicus, Cracticus 333
castaneiceps, Phoeniculus 158
castaneiceps, Rhinopomastus 158
castanilius, Accipiter 155
castanonota, Ptilorrhoa 310, 317, 320, 333
casuarius, Casuarius 310, 311
Casuarius bennetti 310, 311
casuarius, Casuarius 310, 311
Casuarius casuarius 310, 311
Casuarius sp. 311, 327
Catamblyrhynchus diadema 43
Catarrhactes adeliae 131, 137
Cathartes aura 9
Catharactes adaeliae 131, 137
Cathartes aura 9
Catharusrus fuscens 40, 42
Catharusrus ustulatus 13
caudata, Drymophila 209
caudatus, Coracias 237
caudatus, Lamprotornis 167
caiana, Phaya 10
cayennensis, Panyptila 11, 29
Ceblepys raptoralis 237
Cecropis daurica 324, 336
cela, Cacicus 14, 19
Celeus obrieni 21, 22, 31, 32
Celeus torquatus 31, 32
centralis, Bradypterus 229
Centropus bernsteini 330
Centropus menbeki 322, 330
Centropus monoculus 157
Centropus phasianinus 135
Centropus superciliosus 237
Ceratogymna atrata 158
Ceratogymna elata 158
Cercococcyx mechiowi 352, 352–353
Cercomacra Ferdinandi 22, 34
Cercomacra manu 34
Cercotrichas leucophrys 234, 237
Cercotrichas podobe 162
certhia, Borboronichia 338, 339
certhiaceus 22
cerealis, Pterodroma 270, 272–274
cervina, Adelomyia 206, 208
Ceuthmochares aereus 226
Ceuthmochares australis 226
Ceyx azureus 331
Ceyx pusillus 331
Ceyx solitarius 331
Chaetocercus jourdani 203, 206
Chaetorhynchus pappensis 307, 309, 335
Chaetura brachyura 11, 30
Chaetura cinnereiventris 29
Chaetura egréria 21, 29
Chaetura meridionalis 29
Chaetura pelagica 11
Chaetura spinicaudus 29
Chalcites meyerii 292, 304, 305, 313, 330
Chalcites minutillus 330
Chalcites ruficollis 300, 313, 330
Chalcites senegalensis 166, 234, 237
Chalcophaps Stephani 328
Chalcositta atra 329
Chalcopsilus, Turtur 237
Chalcus, Lamprotornis 167
Chalybeae, Lamprotornis 231
Chalybatus, Manucodia 308, 335
chalybea, Progne 13
Chalybea 169, 231, 232, 238
Chamaepepla 188
Charadrius sp. 328
Charadrius tricolor 237
Charadrius Vociferus 10
Charitospiza eucosma 22, 52
Charmosyna morphaeae 305, 312, 319, 329
Charmosyna placenta 329
Charmosyna pulchella 329
Charmosyna rubrotlobata 329
Charmosyna wilhelminae 302
Chenornis hircus 315, 331
cheriway, Caracara 11
Cherrug, Falco 93
chiniaca, Cisticola 237
Chlidonias leucopterus 237
chloris, Todiramphus 110, 128, 331
Chloroceryle americana 11
chloronota, Gerygone 333
chloronota, Criniger 162
Chlorophanes multicolor 167
Chlorophanes sulphureopectus 237
Chlorophonia alcyon 44
Chloropica pyrrhogastra 160
Chloropica xantholophus 160
chloropterus, Lamprotornis 231, 237
chlorospila, Adelomyia 206, 208
Chordeiles acutipennis 11
Chordeiles rupestris 29
Chrysocolocyx caprius 157
Chrysocolocyx klaas 157, 237
Chrysocolocyx purpuratus 159, 235, 237
chrysogaster, Gerygone 308, 333
chrysogaster, Pheucticus 14
chrysogaster, Ptilinopus (purpuratus) 129
Chrysonoma, Carterornis 308, 334
chrysoptera, Daphoenositta 300, 301, 334
chrysostoma, Diomedea 242
Cichladusa guttata 234, 235, 237
Cicinnurus regius 335
cinerea, Acanthiza 333
cinerea, Calandrella 160
cinerea, Motacilla 336
cinereiventris, Chaetura 29
cinereum, Todirostrum 12
cinereus, Circaetus 237
cinereus, Contopus 12
cinereus, Cuculus 131, 136
cinereus, Pycnopygius 301, 302
cinnamomea, Sporophila 22, 49, 51
cinnamomeus, Anthus 161, 237
Cinnyris cupreus 166, 230, 237
Cinnyris habessinicus 234
Cinnyris johannae 166
Cinnyris jugularis 336
Cinnyris mariquensis 237
Cinnyris nectarinioides 230
Cinnyris pulchellus 234
Cinnyris superbus 166
Cinnyris venustus 237
Circaetus cinereus 237
Circaetus pectoralis 237
Circus aeruginosus 237
Circus approximans 128
Circus buffoni 25
Cisticola bodessa 234, 237
Cisticola cantans 234, 237
Cisticola chiniana 237
Cisticola erythrops 235, 237
citrina, Sicalis 46
citrinelloides, Crithagra 232, 233
clamans, Baeopogon 162
clamans, Spiloptila 157
clamator, Asio 143
Clamator, Bubo 143
Clamator levaillantii 226, 237
dolomont, Pseudoscops 10
damus, Cuculus 157
damus, Francolinus 134
Claravis 188
Claravis pretiosa 10, 19
Clibanornis erythrocephalus 12, 16
dimorphus, Caprimulgus 261
dyleata, Spatula 237
Coccyzus americanus 21, 28
Coccyzus erythropthalmus 10
Coccyzus euler 28
Coccyzus lansbergi 10
cocoi, Ardea 9
coelebs, Fringilla 69–76, 72, 74, 75
coelestis, Forpus 11, 16, 19, 92
Coereba flaveola 14
Colaptes rubiginosus 11
collaris, Hedydipna 237
collaris, Sporophila 21, 47, 49
collaris, Todiramphus 114
Collocalia esculenta 330
Colluricincla megarhyncha 308, 321, 334
colluri, Lanius 237
colma, Formicarius 35
colstoni, Puffinus 223
columba albitorques 237
columba arquatrix 226
columba guine 237
columba iriditorques 156
columba Pampusuan 146
columbarius, Falco 11
columba vitiensis 328
columba xanthoura 146
columbiana, Sicalis 46
columbina buckleyi 10
columbina cruziana 10, 15
columbina cyanopis 22
comitata, Muscicapa 164
Compsosoma loricata 21, 46
concina, Ducula 312, 329
concolor, Falco 225, 237
concolor, Macrosphenus 163
concretus, Hemicircus 144
concretus, Picus 144
Conothraupis mesoleuca 21, 22, 41, 42, 43–45
Conothraupis speculigera 13, 18, 19, 44
conspicillatus, Pelecanus 327
Contopus cinereus 12
Contopus cooperi 12
Contopus fumigatus 12, 17
Contopus sordidulus 12, 17
Contopus spp. 17
cookii, Pterodroma 270, 272–274
cooperi, Contopus 12
Caracolus caudatus 237
Coracias garrulus 237
Coracina 307, 309
Coracina azureus 161
Coracina boyeri 333
Coracina caeruleogrisea 308, 333
Coracina lineata 300, 301, 310, 320, 333
Coracina papuensis 333
Coragyps atratus 9
coralliobriss, Trochilus 203
cora, Thamastura 11
cormorans, Carbo 138, 139
Cormorans crassirostres 131, 138, 139
coronatus, Pitilinopus 312, 329
coruscus, Lamproternis 61
corvina, Sporophila 14
Corvus albus 237
Corvus edithae 235
Corvus orru 335
Corvus tristis 335
Corydonix variegatus 136
Cossypha albicapillus 229
Cossypha heuglini 229, 237
Cossypha natalensis 226
Cossypha niveicapilla 229, 235, 237
coturnix, Coturnix 237
Coturnix coturnix 237
Coturnix delegorguei 225
Cracticus cassicus 333
Cracticus quoyi 333
Cranioleuca antisciens 12, 17, 19
crassirostres, Cormorans 131, 138, 139
Crateroscelis murina 318, 323, 332
Crateroscelis robusta 304, 305, 310, 317, 318, 332
Crinistes barbatus 162
Criniger calurus 162
Criniger chloronotus 162
Criniger zdussumensis 162
Scientific Names Index

363

Bull. B.O.C. 2015 135(1)

crispus, Pelecanus 147
cristata, Fulica 237
cristata, Galerida 161
cristata, Goura 328
cristata, Pseudoseisura 46
cristatus, Ornorectes 147, 161, 163, 167
cristatus, Oxyruncus 289
cristatus, Pandion 327
Crithagra citrinelloides 233
Crithagra gularis 233
Crithagra hyposticta, 234
Crithagra xantholaema 233
croconotus, Icterus 52
crotophaga sulcirostris 10

Cruentata, Myzomela 300, 301, 310, 331
Cruentata, Pyrrhula 131, 145
Cruentatus, Psittacus 131, 145, 146
Cruentus, Rhodospingus 14
cruziana, Columbina 10, 15
Cryptoleuca, Peneothello 305, 310, 323, 336
Cryptoleucus, Peneothello 298
Cryptospiza reichenovii 168
Crypturellus strigulosus 8
Crypturellus transfasciatus 8, 9
Cuculus canorus 237
Cuculus cinereus 131, 136
Cuculus clamosus 157
cunicularia, Athene 10
cupreoventris, Eriocnemis 207
cupreus, Cinnyris 166, 230, 237
canorus, Delichon urbicum 237

decoratus, Pterocephalus 237
deleorguesi, Coturnix 225
Delichon urbicum 237

Dendropicos fuscescens 131, 144, 159
Dendropicos gabanensis 159
desmarestii, Carbo 131, 139
desmarestii, Psittaculirostris 329
Devioeca papuana 335
diabolica, Procellaria 147
diabolicus, Procellaria 147
diadema, Catamblyrhynchus 43
diadema, Tricholaema 237

Dicaeum pectorale 336
dichrocephalus, Ploceus 321
dichrous, Pitohui 300, 307–309, 321, 334

Dicururs adsimilis 167, 235
Dirrurus brachetatus 307, 308, 324, 334

Dicururs modestus 154, 167
Diomedea chrysoptera 342
Diphyllodes magnificus 299, 306, 308, 309, 335
Dives warszewiczii 14

Dolichonix oryzivorus 21, 54
Dolospingus 44, 45
Dolospingus fringilloides 44
dominica, Motacilla 339
donaldsoni, Caprimulgus 226, 235, 237
dougalii, Sterna 328

Drepanornis albertisi 309, 310, 322, 335
Drymodes beccarii 301, 302
Drymophila caudata 209
Dryobates minor 136

Dryocopus lineatus 11
Dryoscorpis gambensis 230
Dryoscorpis senegalensis 166
dubius, Pogonornis 131, 144
Ducula bicolore 329
Ducula concinna 312, 329
Ducula pinon 329
Ducula rugifaster 329
Ducula zoae 328

dumontii, Mino 336

Dryophorophyia blissetti 165
ecaudatus, Myornis 36

Eclectus roratus 93, 329

Ectopistes migratorius 174–184, 181
editiae, Corvus 235

Edolisoi, Melaenornis 237
Edolosoma 307, 308
Edolosoma incertum 299, 305, 308, 320, 334
Edolosoma melas 308, 334
Edolosoma montanum 304, 309, 334
Edolosoma schisticeps 308, 320, 334

Edolosoma tenuirostre 320, 334
egregia, Chaetura 21, 29
EGreta caerulea 25
EGreta sacra 327
EGreta thula 9

Elanien flavogaster 12
elata, Ceratogymna 158

elegans, Melaenornis 12
Eledrothepus anomalus 28

Eledrothepus candelus 28, 261

Emberiza borbonica 338
Emberiza cabanisi 169
episcopus, Thrupis 13, 19
epops, Upupa 237
epulata, Muscicapa 154, 163
eques, Myzomela 331
Eremomela icteropygialis 163
Eriocnemis cupreoventris 207
Eriopus simplex 207
erlangeri, Batis 154, 165, 228, 230
erythrocephalus, Clibanornis 12, 16
erythrocephalus, Trachyphonus 237
erythrogaster, Euplectes hordeaceus 235
erythrogenys, Psittacara 12, 16
Erythropitta erythrogaster 331
erthropleura, Ptiloprora 305, 310, 315, 332
erythroptera, Ortalis 8, 9
erthroptera, Falco 11
erthrogaster, Laniarius 235
erthroptera, Ortalis 8, 9
erthyrogaster, Erythropitta 331
erthrogaster, Laniarius 235
erthyrogaster, Laniarius 235
galatea, Tanysiptera 321, 331
Galbula cyanescens 80–83, 81
galbula, Galbula 82
Galbula galbula 82
Galbula jacama 80
Galbula pastazae 80–82
galbula, Ploceus 238
Galbula ruficauda 82
Galbula tombacea 80–82
Galbula tridactyla 131, 143, 144
Galerita cristata 161
galerita, Cacatua 329
Gallicolumba rufigula 328
gallinago, Gallinago 149
gallinago, Gallinago 149
gambensis, Dryoscopus 230
Campsonyx swainsonii 9
Garrtornis isidorei 307, 308, 333
Garrodia 240, 244
Garrodia nereis 87, 242, 243
garrulus, Coracias 237
gaudichaud, Dacelo 331
Gavicalis versicolor 309, 332
gayaquilensis, Campephilus 11
Gennaeodryas placens 309, 323, 324, 336
geoffroyi, Geoffroyus 330
Geoffroyus geoffroyi 330
Geoffroyus simplex 330
Geothlypis aequinoctialis 14, 39
Geranoaetus melanoleucus 10
Geranoaetus polyosoma 10
Geranospiza caerulescens 9
Gerygone 307
Gerygone chloronota 333
Gerygone chrysovaster 308, 333
Gerygone magnirostris 333
Gerygone palpebrosa 299, 308, 333
Gerygone ruficollis 299, 308, 333
Grygus grus 80–83, 81
gigantea, Megalampitta 294, 298, 322, 335
Glareola pratincola 237
Glaucidium brasilianum 52
Glaucidium parkeri 77–79, 77, 78
Glaucidium peruanum 10
Glycichaera fallax 307, 332
Goura cristata 328
gracilis, Oceanites 242, 243
gularis, Sterna 328
grallaria, Fregata 87–91, 88, 89, 240, 241, 242, 243, 244, 245
Grallaria watkinsi 12, 15
Grallina bruji 301, 302, 310
Granatina ianthinogaster 234, 238
grayi, Chonornathus 315, 331
grisea, Formicivora 33
griseicapilla, Euodice 238
griseicapillus, Sittasomus 12
griseigula, Timeliopsis 308, 316, 332
griseipigus, Lathrotricus 12, 17
griseisticta, Muscicapra 325, 336
griseoceps, Kumpilla 300, 335
griseogularis, Pachyramphus 11
griseus, Nyctibius 10
grus, Grus 237
Grus grus 237
grynphus, Vultur 9, 15
gubernator, Lanius 166
guisbalti, Lybius 237
guilleimi, Paradisaea 293
guinea, Columbia 237
guineensis, Melaniparus 105
guinanesis, Cyclorhina 13, 19
gularis, Crithagra 233
gularis, Merops 158
guilemiettii, Cyclopsitta 329
gurneyi, Aquila 311, 327
guttata, Cichladusa 234, 235, 237
guttata, Fregetta 240, 241
guttata, Fregettornis 241
guttatus, Totanus 131, 141
guttula, Symposiachrus 334
guttula, Symposiarchus 334
Gymnobucco calvus 159
Gymnobucco peli 159
Gymnophaps albertisii 299, 329
gymnops, Melipotes 310, 316
Gymnoris pygmaea 237
Gyps rueppelli 225
habessinicus, Cinnyris 234
haematina, Spermophaga 168
haematodus, Trichoglossus 329
Halcyon malimbica 226
Halcyon senegalensis 227
Halcyon veneratus 124
Haliaeetus leucocephalus 309, 327
Haliaeetus vocifer 226
haliaeetus, Pandion 237
Haliastur indus 158
Harpyopsis novaeguineae 327
hartlaubi, Horizocerus 158
hartlaubi, Tockus 158
hasitata, Pterodroma 147, 270, 271, 272–274
himmans, Pachycephalops 301, 303
Heddyphina collaris 237
heinei, Zootera 300, 301, 310, 336
Heliactin bilophus 30
Heliomaster longirostris 11
Hemicircus minimus 37
hemprichii, Tockus 237
Henicopernis longicauda 237
Henicophaps albifrons 328
Herpetotheres cachinnans 11
Heteromyias pallidus 300, 304, 306, 310, 323, 336
Heteroscelus pallidus 131, 136
Heterotetrax humilis 225
heuglini, Cossypha 229, 237
Himantopus mexicanus 10
hiogaster, Accipiter 330
Hippolais icterina 237
hirundineus, Aerodramus 314, 330
hirundineus, Merops 158
Hirundo borbonica 338
Hirundo megaensis 229
Hirundo rustica 324, 336
Hirundo smithii 237
hirundo, Sterna 328
Hirundo tahitica 324, 336
hispanica, Oenanthe 237
hispaniolensis, Poospiza 13
homochrous, Pachyramphus 13, 17
horokee, Euplectes 235
Scientific Names Index

Horizocerus hartlaubi 158
hortensis, Sylvia 229
huetti, Tout 27
humilis, Heterotetrax 225
Hydrobates furcatus 242
Hydrobates leucorhous 147, 242
Hydrobates melania 242
Hydrobates microsoma 242
Hydrobates pelagicus 242
Hydrobates tethys 242
Hydrobates tristrami 242
Hylophilus semicinereus 41
Hypergerus atriceps 163
hyperythra, Pachycephala 321, 334
hyperythra, Rhipidura 308, 335
Hyphantornis personatus 168
Ibis, Bubulcus 9, 237
Ibis, Mycteria 237
Ibycter americanus 26
icterina, Hippolais 237
icterinus, Phyllastrephus 162
icteropygialis, Eremomela 163
Icterus croconotus 52
Icterus graceannae 14, 15, 19
Icterus jamacaii 52
Icterus mesomelas 14
Ictinia mississippiensis 26
iliolophus, Oedistoma 309, 333
Ilładopsis rufipennis 165
imberi sp. nov., Pterodroma 270, 272–275, 273
incertum, Edolisoma 203, 206
indus, Haliastur 327
inexpectata, Pterodroma 267, 270, 273, 274
intermedia, Ardea 327
inornatus, Adelomyia 206, 208
inornatus, Amblyornis 294, 298, 314, 321, 331
inornatus, Amblyornis 306
inornatus, Caprimulgus 237
inornatus, Edolisoma 309, 333
insignis, Aegotheles 301, 310, 314, 330
insignis, Aeotheles 300
insignis, Prodotiscus 159
intermedius, Ploceus 238
ioporus, Pitiloporus 329
Iopilicus obsoletus 160
iriditorques, Columba 156
isabellina, Oenanthe 237
isabellinus, Lanius 237
isidorei, Garrifornis 307, 308, 333
jacamaralcyon tridactyla 131, 143
jacamar, Galbula 80
jacarina, Volatinia 13, 47
jacksoni, Tockus 227
jacuca, Penelope 24
jamacaii, Icterus 52
jamesi, Tchagra 230, 237
jardini, Glauclidium 77
javanicus, Acridotheres 61
jobiensis, Talegalla 311
johannae, Cinnyris 166
josefinae, Charmosyna 305, 312, 319, 329
journani, Chaetocercus 203, 206
jubata, Neocheon 22
jugabilis, Pterodroma 275
jugularis, Cinnyris 336
keiensis, Micropsitta 330
Kempiella flavivirescens 335
Kempiella griseocephus 300, 335
keraudreni, Phonygammus 296, 300, 308, 322, 335
kinrocephalus, Pitohui 307–309, 321, 334
Klusa, Chrysococcyx 157, 237
Knipolegus nigerrimus 38
Knipolegus onocensis 21, 37, 38
Knipolegus scalteri 37
Kurodai, Pterodroma 275
laforesnayii, Merops 235
Lagonosticta larvata 232
Lagonosticta rhodoparea 231, 238
Lagonosticta rubripes 169
Lagonosticta rufopicta 169, 233
Lagonosticta senegala 169
Lalage atrovirens 333
Laletes osburni 342, 343, 345, 346
lamotii, Scolopax 149
Lampornis viridipallens 203
Lamprotornis bicolor 61
Lamprotornis caudatus 167
Lamprotornis chalybaeus 167
Lamprotornis chalybaeus 231
Lamprotornis chloropterus 231, 237
Lamprotornis coruscus 61
Lamprotornis shelleyi 234
Laniarius aethiopicus 167
Laniarius erythrogaster 235
Laniarius funebris 235, 237
Laniarius isabellinus 237
Laniarius jamacaii 237
Laniarius lansbergi, Coccyzus 10
Larvata, Aplopelia 237
Larvata, Lagonosticta 232
larvatica, Vidua 224, 232, 238
larvatus, Oriolus 234, 237
Laterallus exilis 26
Lathrotriccus griseiceps 12, 17
Scientific Names Index

Scientific Names Index

Bull. B.O.C. 2015 135(1)

367

Bull. B.O.C. 2015 135(1)

latinuchus, Atlapetes 209
latrostris, Poecilotriccus 36
leachii, Procellaria 147
Lepidocolaptes souleyetii 12, 19
Leptocoma aspasia 336
Leptotila ochraceiventris 10, 19
Leptotila verreauxi 10, 15
lepturus, Phaethon 191
lessonii, Pterodroma 270, 271, 273, 274
Leucippus baeri 11, 15
leucocephalus, Lybius 159
leucogaster, Haliaeetus 309, 327
leucogaster, Sula 327
leucogaster, Sula 327
leucolophus, Caliechthrus 330
Leptocoma aspasia 336
Leptotila ochraceiventris 10, 19
Leptotila verreauxi 10, 15
lepturus, Phaethon 191
lessonii, Pterodroma 270, 271, 273, 274
Leucippus baeri 11, 15
leucocephalus, Lybius 159
leucogaster, Haliaeetus 309, 327
leucogaster, Sula 327
leucolophus, Caliechthrus 330
leucomelas, Larus 131, 141
leucomelas, Melaniparus 105
leucophrys, Cercotrichas 234, 237
leucophrys, Rhipidura 335
leucophrys, Vireo 13
leucops, Tregellasia 299, 306, 324, 336
leucoptera, Sporophila 49
leucopterus, Atlapetes 14, 18
leucopterus, Chlidonias 237
leucopterus, Chlidonias 237
leucopus, Furnarius 12, 16
leucorhoa, Procellaria 147
leucorhous, Hydrobates 147, 242
leucorodia, Platalea 225, 237
leucorynchus, Artamus 333
leucospila, Rallicula 300, 306, 310–312, 317, 327
leucospodia, Pseudelaenia 12
leucostephes, Melidectes 306, 310, 316, 332
leucotis, Ptilopsis 233, 237
leucotis, Tauraco 233
levaillantii, Clamator 226, 237
lherminieri, Puffinus 149
Lichenostomus melanops 111
Lichmera alboauricularis 332
lineata, Coracina 300, 301, 320, 333
lineata, Fregetta 240
lineata, Thalassidroma 245
lineatus, Cymbilaimus 21, 33
lineatus, Dryocopus 11
Locustella fasciolata 325, 336
lomvia, Uria 131, 142, 143
longicauda, Henicopernis 327
longicauda, Melanocharis 309, 310, 319, 320, 333
longicaudatus, Mionetta 13, 15, 19
longigenuis, Macrodipteryx 261
longirostris, Acrocephalus 129
longirostris, Heliomaster 11
longirostris, Phaeornis 11
longirostris, Pterodroma 87, 270, 272
longirostris, Thalassidroma 278–280, 278, 279
longuemarei, Anthreptes 166
loricata, Compsothraupis 21, 46
Lorius lory 329
loris, Lorius 329
Loxia bourdonnensis 338
luctuosa, Sporophila 14, 18
luctuosa, Sakesphorus 33
Lugens brevirostris 268, 270, 272
lugens, Streptopelia 237
lugubris, Poepoeptera 167
luscinia, Luscinia 237
Luscinia luscinia 237
Lybius guifisobalito 237
Lybius leucocephalus 159
macgillivrayi, Pseudobulweria 95, 217
Machaerirhynchus 307
Machaerirhynchus flaviventer 308, 333
Machaerirhynchus nigripectus 333
Macrodipteryx longipennis 261
Macrodipteryx vexillarius 247
Macronectes 217
Macronyx flavicollis 237
macroptera, Pterodroma 270–272, 273, 274
Macropygia amboinensis 309, 328
Macropygia nigrirostris 328
macrorhina, Melidora 305
macrorhynchus, Carbo 138
macrorhina, Melidora 323, 331
Macropygia amboinensis 309, 328
Macropygia nigrirostris 328
macrorhina, Melidora 323, 331
Macropygia amboinensis 309, 328
Macropygia nigrirostris 328
macrorhina, Melidora 323, 331
Macropygia amboinensis 309, 328
Macropygia nigrirostris 328
macrorhina, Melidora 323, 331
Macropygia amboinensis 309, 328
Macropygia nigrirostris 328
macrorhina, Melidora 323, 331
Macropygia amboinensis 309, 328
Macropygia nigrirostris 328
macrorhina, Melidora 323, 331
Macropygia amboinensis 309, 328
Macropygia nigrirostris 328
macrorhina, Melidora 323, 331
Macropygia amboinensis 309, 328
Macropygia nigrirostris 328
Melaniparus albitrises 99, 105
Melaniparus guineensis 105
Melaniparus leucomelas 105
Melaniparus rufiventris 98–107, 99, 102–105
Melaniparus thruppi 237
melanocephala, Ardea 237
melanocephalus, Ploceus 231
Melanocharis longicauda 309, 310, 319, 320, 333
Melanocharis nigra 333
Melanocharis striativentris 300, 301, 310, 319, 320, 333
melanogaster, Formicivora 33, 34
melanogaster, Sporophila 51
melanogaster, Trochilus 200, 201, 202
melanoleuca, Tringa 10
melanoleucos, Microcarbo 327
melanoleucus, Geranoaetus 10
melanoleucus, Seleucidis 335
melanopygius, Totanus 131, 146
melanops, Lichenostomus 111
melanops, Sporophila 21
melanopygius, Totanus 141
melas, Edolisoma 308, 334
melba, Pytilia 168, 238
Melichneutes robustus 159
Melidectes leucostephes 306, 310, 316, 332
Melidectes torquatus 301, 302
Melidectes semitorquatus 11
Mixtus, Picoides (Veniliornis) 30
Modesta, Ardea 296, 327
modesta, Muscicapa 164
modestus, Dicrurus 154, 167
moluccana, Amaurornis 328
moluccensis, Cacatua 93
Momotus subrufescens 11
Monachella muelleriana 299, 301, 302, 310
monachus, Centropus 157
Monarcha 307
Monarcha frater 308, 334
montana, Meliphaga 316, 318, 332
monanus, Edolisoma 304, 309, 334
monanus, Passer 325, 336
montanus, Peltops 333
Monticola saxatilis 162
morio, Onychognathus 167
Motacilla aguimp 161
Motacilla albicollis 338, 340
motacilla, Peltops 333
Motacilla cinerea 336
Motacilla dominica 339
Meropis persicus 237
Merops pusillus 158
Merops variegatus 158
merulinus, Cacomantis 136
mesoleuca, Conothraupis 21, 22, 41, 42, 43–45
mesomelas, Icterus 14
mesurus, Trogon 11
metabates, Melierax 155
metallica, Aplonis 336
Metallura sabiniae 203
mexicanus, Himantopus 10
meyeri 332
meyeri, Accipiter 311, 327
meyerii, Chalcites 292, 304, 315, 313, 330
meyeri, Pachycephala 293
Microstur semitorquatus 11
Microcarbo melanoleucus 327
Microdynamis parva 330
Microeca 307
Micronisus gaban 237
Micropsitta bruijini 293, 304, 330
Micropsitta kiensis 330
microperus, Atricilla 131, 141
microhynchus, Bradornis 234
microsoma, Hydrobates 242
micrura, Myrmia 11, 15
migratorius, Ectopistes 174–184, 181
militaris, Sturnella 53, 54
Mimus longicaudatus 13, 15, 19
Minimus, Hemitriccus 37
Mino anais 336
Mino dumontii 336
minor, Dryobates 136
minor, Indicator 237
minor, Paradisaea 308, 335
minuillia, Calidris 10, 140
minuillia, Tringa 140
minuillillu, Chalcites 330
Mirafrana africana 160
Mirafrana albicauda 154, 160
Mirafrana cantillans 160, 237
Mirafrana rufoicinnamomea 160
mississippiensis, Ictinia 21, 26
mixtus, Picoides (Veniliornis) 30
modesta, Centropus 157
modestus, Dicrurus 154, 167
mollis, Pterodroma 267, 270, 272–274
Molothrus bonariensis 14
Molothrus rufoxillaris 53
moluccana, Amaurornis 328
moluccensis, Cacatua 93
Momotus subfusescens 11
Monachella muelleriana 299, 301, 302, 310
monachus, Centropus 157
Monarcha 307
Monarcha frater 308, 334
montana, Meliphaga 316, 318, 332
montanus, Edolisoma 304, 309, 334
montanus, Passer 325, 336
montanus, Peltops 333
Monticola saxatilis 162
morio, Onychognathus 167
Motacilla aguimp 161
Motacilla borbonica 338, 340
Motacilla rubra 338
Motacilla cinerea 336
Motacilla feminina 339
<table>
<thead>
<tr>
<th>Scientific Names Index</th>
<th>369</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. B. C. 2015 135(1)</td>
<td></td>
</tr>
<tr>
<td>Motacilla flava</td>
<td>237</td>
</tr>
<tr>
<td>multieriana, Monarchella 299, 301, 302, 310</td>
<td></td>
</tr>
<tr>
<td>multicolor, Chlorophoenix 167</td>
<td></td>
</tr>
<tr>
<td>murina, Crateroscelis 318, 323, 332</td>
<td></td>
</tr>
<tr>
<td>murina, Phaeomyias 12</td>
<td></td>
</tr>
<tr>
<td>musae, Acrocephalus 129</td>
<td></td>
</tr>
<tr>
<td>Muscicapa 346</td>
<td></td>
</tr>
<tr>
<td>Muscicapa borbonica 338</td>
<td></td>
</tr>
<tr>
<td>Muscicapa bourbonensis 338</td>
<td></td>
</tr>
<tr>
<td>Muscicapa caerulescens 163</td>
<td></td>
</tr>
<tr>
<td>Muscicapa cassini 164</td>
<td></td>
</tr>
<tr>
<td>Muscicapa comitata 164</td>
<td></td>
</tr>
<tr>
<td>Muscicapa epulata 154, 163</td>
<td></td>
</tr>
<tr>
<td>Muscicapa griseisticta 325, 336</td>
<td></td>
</tr>
<tr>
<td>Muscicapa infuscata 164</td>
<td></td>
</tr>
<tr>
<td>Muscicapa modesta 164</td>
<td></td>
</tr>
<tr>
<td>Muscicapa olivascens 163</td>
<td></td>
</tr>
<tr>
<td>Muscicapa striata 234, 237</td>
<td></td>
</tr>
<tr>
<td>Muscicapa tessmanni 164</td>
<td></td>
</tr>
<tr>
<td>Muscicapa ussheri 154, 164</td>
<td></td>
</tr>
<tr>
<td>Muscicapa ussheri 154, 164</td>
<td></td>
</tr>
<tr>
<td>Muscigrella brevicauda 12</td>
<td></td>
</tr>
<tr>
<td>musicus, Bias 164</td>
<td></td>
</tr>
<tr>
<td>Mycteria americana 9</td>
<td></td>
</tr>
<tr>
<td>Mycteria ibis 237</td>
<td></td>
</tr>
<tr>
<td>Myiagra alecto 309, 324, 334</td>
<td></td>
</tr>
<tr>
<td>Myiarchus phaeocephalus 13</td>
<td></td>
</tr>
<tr>
<td>Myiarchus semirufus 12, 17</td>
<td></td>
</tr>
<tr>
<td>Myiarchus tuberculifer 13</td>
<td></td>
</tr>
<tr>
<td>Myiodynastes bairdii 12</td>
<td></td>
</tr>
<tr>
<td>Myiodynastes maculatus 12</td>
<td></td>
</tr>
<tr>
<td>Myiopagis subplacens 12</td>
<td></td>
</tr>
<tr>
<td>Myioparus plumbeus 235, 237</td>
<td></td>
</tr>
<tr>
<td>Myiophobus fasciatus 12</td>
<td></td>
</tr>
<tr>
<td>Myiothlypis fraseri 14</td>
<td></td>
</tr>
<tr>
<td>Myornis ecaudatus 36</td>
<td></td>
</tr>
<tr>
<td>Myrmia micrura 11, 15</td>
<td></td>
</tr>
<tr>
<td>Myrmophylax (Myrmeciza) atrothorax 35</td>
<td></td>
</tr>
<tr>
<td>Myrtis fanny 11</td>
<td></td>
</tr>
<tr>
<td>mystacalis, Cyanocorax 13, 15, 18</td>
<td></td>
</tr>
<tr>
<td>mystacea, Hemiprocne 330</td>
<td></td>
</tr>
<tr>
<td>Muscicapa olivascens 163</td>
<td></td>
</tr>
<tr>
<td>Muscicapa striata 234, 237</td>
<td></td>
</tr>
<tr>
<td>Myzomela adolphinae 302</td>
<td></td>
</tr>
<tr>
<td>Myzomela caudata 300, 301, 310, 331</td>
<td></td>
</tr>
<tr>
<td>Myzomela eques 331</td>
<td></td>
</tr>
<tr>
<td>Myzomela nigrita 332</td>
<td></td>
</tr>
<tr>
<td>Myzomela obscura 331</td>
<td></td>
</tr>
<tr>
<td>Myzomela olivascens 163</td>
<td></td>
</tr>
<tr>
<td>Nesofregatta 240</td>
<td></td>
</tr>
<tr>
<td>Nesofregatta fuliginosa 243</td>
<td></td>
</tr>
<tr>
<td>nicolae, Puffinus 221</td>
<td></td>
</tr>
<tr>
<td>nigerrimus, Knipolegus 38</td>
<td></td>
</tr>
<tr>
<td>nigerrimus, Ploceus 168</td>
<td></td>
</tr>
<tr>
<td>niger, Threnetes 203</td>
<td></td>
</tr>
<tr>
<td>nigra, Melanocharis 333</td>
<td></td>
</tr>
<tr>
<td>nigrescens, Melanorhina 307, 308, 320, 321, 334</td>
<td></td>
</tr>
<tr>
<td>nigriceps, Ploceus 238</td>
<td></td>
</tr>
<tr>
<td>nigricollis, Podiceps 225, 237</td>
<td></td>
</tr>
<tr>
<td>nigricollis, Sporophila 49</td>
<td></td>
</tr>
<tr>
<td>nigripennis, Machaerirhynchus 333</td>
<td></td>
</tr>
<tr>
<td>nigripennis, Pterodroma 267, 270, 272, 273, 274</td>
<td></td>
</tr>
<tr>
<td>nigrirrostris, Macropygia 328</td>
<td></td>
</tr>
<tr>
<td>nigrigula, Myzomela 333</td>
<td></td>
</tr>
<tr>
<td>Nilaius afer 234, 237</td>
<td></td>
</tr>
<tr>
<td>Ninox rufa 330</td>
<td></td>
</tr>
<tr>
<td>Ninox theromachia 330</td>
<td></td>
</tr>
<tr>
<td>nitratus, Malimbus 168</td>
<td></td>
</tr>
<tr>
<td>nitens, Psalidoprocne 161</td>
<td></td>
</tr>
<tr>
<td>nitens, Trochocercus 165</td>
<td></td>
</tr>
<tr>
<td>niveicapilla, Cossypha 229, 235, 237</td>
<td></td>
</tr>
<tr>
<td>niveigularis, Tyrannus 12, 19</td>
<td></td>
</tr>
<tr>
<td>nobilis, Otidiphaps 299, 328</td>
<td></td>
</tr>
<tr>
<td>notatus, Bleda 162</td>
<td></td>
</tr>
<tr>
<td>Nothoprocta pentlandii 8, 9</td>
<td></td>
</tr>
<tr>
<td>nouhuysi, Sericornis 300, 301, 306, 312, 319, 332</td>
<td></td>
</tr>
<tr>
<td>novaeguineae, Harpyopsis 327</td>
<td></td>
</tr>
<tr>
<td>novaeguineae, Mearnsia 331</td>
<td></td>
</tr>
<tr>
<td>novaeguineae, Toxorhamphus 333</td>
<td></td>
</tr>
<tr>
<td>novaeguineae, Zosterops 300, 301, 306, 310, 324, 336</td>
<td></td>
</tr>
<tr>
<td>novaehollandiae, Recurvirostra 148</td>
<td></td>
</tr>
<tr>
<td>novaehollandiae, Scythrops 330</td>
<td></td>
</tr>
<tr>
<td>rubica, Campethera 235</td>
<td></td>
</tr>
<tr>
<td>Nyctanassa violacea 131, 138</td>
<td></td>
</tr>
<tr>
<td>Nycticirius griseus 10</td>
<td></td>
</tr>
<tr>
<td>Nycticorax caledonicus 327</td>
<td></td>
</tr>
<tr>
<td>nycticorax, Nycticorax 9</td>
<td></td>
</tr>
<tr>
<td>Nycticorax australis 333</td>
<td></td>
</tr>
<tr>
<td>Nycticorax oceanicus 131, 138</td>
<td></td>
</tr>
<tr>
<td>Nychidromus albicollis 11</td>
<td></td>
</tr>
<tr>
<td>Nycticorax anthonyi 11, 19</td>
<td></td>
</tr>
<tr>
<td>nympha, Tanysiptera 331</td>
<td></td>
</tr>
<tr>
<td>Nystactes tamatiae 30</td>
<td></td>
</tr>
<tr>
<td>obrienii, Celeus 21, 22, 31, 32</td>
<td></td>
</tr>
<tr>
<td>obscura, Caligavis 301, 302</td>
<td></td>
</tr>
<tr>
<td>obscura, Myzomela 331</td>
<td></td>
</tr>
<tr>
<td>obsolatum, Campstoma 12</td>
<td></td>
</tr>
<tr>
<td>obsoletus, Ipophilus 160</td>
<td></td>
</tr>
<tr>
<td>obsoletus, Picoides 160</td>
<td></td>
</tr>
<tr>
<td>occidentalis, Pseudastur 19</td>
<td></td>
</tr>
<tr>
<td>oceanicus, Nycticorax 131, 138</td>
<td></td>
</tr>
<tr>
<td>oceanicus, Oceanites 242, 243</td>
<td></td>
</tr>
<tr>
<td>Oceanites 244</td>
<td></td>
</tr>
<tr>
<td>Oceanites gracilis 242, 243</td>
<td></td>
</tr>
<tr>
<td>Oceanites oceanicus 242, 243</td>
<td></td>
</tr>
<tr>
<td>Oceanites pincoyae 240</td>
<td></td>
</tr>
<tr>
<td>Oceanites sp. 327</td>
<td></td>
</tr>
<tr>
<td>Oceanodroma matsudairae 89</td>
<td></td>
</tr>
<tr>
<td>ocellatus, Podargus 330</td>
<td></td>
</tr>
<tr>
<td>ochraceiventris, Leptotila 10, 19</td>
<td></td>
</tr>
<tr>
<td>ochrogaster, Penelope 21, 22, 23</td>
<td></td>
</tr>
<tr>
<td>ochropus, Tringa 237</td>
<td></td>
</tr>
<tr>
<td>ocreata, Fraseria 163</td>
<td></td>
</tr>
<tr>
<td>ocularis, Ploceus 235</td>
<td></td>
</tr>
<tr>
<td>Oedistoma liliolophus 309, 333</td>
<td></td>
</tr>
<tr>
<td>Oedistoma pygmaeum 333</td>
<td></td>
</tr>
<tr>
<td>Oenanthe hispanica 237</td>
<td></td>
</tr>
<tr>
<td>Oenanthe isabellina 237</td>
<td></td>
</tr>
<tr>
<td>Oenanthe pleschanka 237</td>
<td></td>
</tr>
<tr>
<td>olivacea, Bostrychia 154, 155</td>
<td></td>
</tr>
<tr>
<td>olivacea, Piranga 14</td>
<td></td>
</tr>
<tr>
<td>olivaceus, Vireo 13</td>
<td></td>
</tr>
<tr>
<td>olivascens, Muscica 163</td>
<td></td>
</tr>
<tr>
<td>Onychognathus fulgidus 167</td>
<td></td>
</tr>
</tbody>
</table>
Scientific Names Index

Onychognathus morio 167
Onychognathus salvadorii 237
Onychognathus tenuirostris 235
Onychoprion anaethetus 328
Onychoprion fuscatus 218, 348
Oreas, Picathartes 165
orencens, Knipolegus 21, 37, 38
Oreopodus ruficollis 10
orientalis, Anthreptes 234, 237
orientalis, Batis 164, 228, 230
orientalis, Eudynamys 330
orientalis, Eurystrisus 331
orientalis, Meliaphaga 310, 317, 318, 332
Oriolus larvatus 234, 237
Oriolus szalayi 334
ornatus, Merops 331
O偏向小, Corvus 335
Otidiphaps nobilis 299, 328
otus, Asio 237
Otus senegalensis 157, 237
ovampensis, Accipiter 225, 237
Oxyruncus cristatus 289
Pachycare flavogrisea 308
Pachycare flavogriseum 300, 318, 332
Pachycephala 307, 321
Pachycephala schlegeli 308, 310, 321, 334
Pachycephala simplex 308, 334
Pachycephala soror 298, 308–310, 321, 334
Pachycephalopsis 302
Pachycephalops hattamensis 301, 303
Pachyramphus albogriseus 13
Pachyramphus homochrous 13, 17
Pachyramphus spodiurus 13, 17
Pacificus, Larus 131, 141
palidus, Heterosceles 131, 136
palpebrosa, Gerygone 299, 308, 333
palustris, Acrocephalus 237
palustris, Sporophila 22, 49–51
Pampusan, Columba 146
Pandion cristatus 327
Pandion haliaetus 9
Panyptila cayennensis 11, 29
papa, Sarcoramphus 9, 15
papillosa, Ibis 131, 137
papillosa, Pseudibis 131, 137
papuana, Deviocca 335
papua, Erythura 302
papuensis, Chaetorrhynchus 307, 309, 335
papuensis, Coracina 333
papuensis, Podargus 330
Parabuteo unicinctus 10
Paradigalla 300, 310
Paradigalla sp. 301, 322, 335
Paradisea guillemi 293
Paradisea minor 308, 335
paradisea, Vidua 238
pareri, Glaucidium 77–79, 77, 78
parva, Microdynamis 330
Passer montanus 325, 336
pastazae, Galbula 80, 81, 82
Pelea 240
pectoralis, Dicaeum 336
pectoralis, Caprimulgus 247
pectoralis, Cebalepyris 237
pectoralis, Circetaeus 237
pelagica, Chaetura 11
pelagicus, Hydrobates 242
Pelagodroma 244
Pelagodroma marina 242, 243, 244
Pelicanus conspicillatus 327
Pelicanus crispus 147
pel, Gymnobucco 159
pelios, Turdus 237
pel, Scotopelia 157
Peltops blainvillii 333
Peltops montanus 333
pelzelni, Ploceus 167
Penelope jacucaca 24
Penelope ochrogaster 21–23
Penelope pileata 24, 31
Penelope supercilii 24
Peneothello cryptoleucus 305, 310, 323, 336
Peneothello cryptoleucus 298
Peneothello cyanus 310, 323, 324
penterlandii, Nothroposta 8, 9
pergrinus, Falco 11
Peristera 188
perkeo, Batis 237
perlatus, Pitilinopus 328
persicus, Merops 237
persicus, Puffinus 348
personatus, Hyphantornis 168
perspicillata, Pulsatrix 10
perspicillatus, Sericornis 319
peruanum, Glaucidium 10
peruviana, Sporophila 13
Petaurus breviceps 314
Petrochelidon pyrrhonota 40
Petrochelidon rufocollaris 13
Phaeolodus ruber 33
p Hispanicus, Myiarchus 13
Phaenoclytas murina 12
p Hawaiianus, Pterodroma 242
Phaethon aethereus 191
Phaethon lepturus 191
Phaethon rubricauda 190–192, 190, 191
Phaethon griseogularis 11
Phaethon longirostris 11
Phalacrocorax aristotelis 131, 139
Phalacrocorax brasilianus 9
Phalacrocorax carbo 131, 138, 139
Phalacrocorax sulcirostris 327
pharetra, Setophaga 345
pharetra, Sylvicola 345
phasianinus, Centropus 135
Phedina borbonica 338
Pheucticus chrysogaster 14
Pheugopedius sclateri 13, 18
Philemon buceroides 309, 332
Phoeniculus castaneiceps 158
Phoeniculus damarensis 226, 227, 228, 237
Phoeniculus purpureus 226, 227
Phoeniculus somaliensis 227
Phoeniculus phoenicurus 229
Phoenicurus phoenicurus 229
<table>
<thead>
<tr>
<th>Scientific Names Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phonygammus 308</td>
</tr>
<tr>
<td>Phonygammus keraudrenii 296, 300, 308, 322, 335</td>
</tr>
<tr>
<td>Phrygilus alaudinus 13</td>
</tr>
<tr>
<td>Phrygilus plebejus 13</td>
</tr>
<tr>
<td>Phyllastrephus baumanni 162</td>
</tr>
<tr>
<td>Phyllastrephus icterinus 162</td>
</tr>
<tr>
<td>Phyllastrephus strepitans 237</td>
</tr>
<tr>
<td>Phylloscopus 307</td>
</tr>
<tr>
<td>Phylloscopus polycephalus 304, 308, 309, 336</td>
</tr>
<tr>
<td>Phytotoma raimondii 13</td>
</tr>
<tr>
<td>Piaya cayana 10</td>
</tr>
<tr>
<td>Picathartes oreas 165</td>
</tr>
<tr>
<td>Picoides obsoletus 160</td>
</tr>
<tr>
<td>Picoides (Veniliornis) mixtus 30</td>
</tr>
<tr>
<td>Piculus rubiginosus 19</td>
</tr>
<tr>
<td>Piculus sclateri 11, 15, 19</td>
</tr>
<tr>
<td>Picus concretus 144</td>
</tr>
<tr>
<td>Picus fuscescens 131, 144</td>
</tr>
<tr>
<td>pileata, Penelope 24, 31</td>
</tr>
<tr>
<td>pileata, Sporophila 47, 48</td>
</tr>
<tr>
<td>pincocyae, Oceanites 240</td>
</tr>
<tr>
<td>pinon, Ducula 329</td>
</tr>
<tr>
<td>Piranga flav a 14, 19</td>
</tr>
<tr>
<td>Piranga olivacea 14</td>
</tr>
<tr>
<td>Piranga rubra 14</td>
</tr>
<tr>
<td>ptitangua, Megarynchus 12, 17</td>
</tr>
<tr>
<td>Ptianngus sulphuratus 17</td>
</tr>
<tr>
<td>ptiayumi, Setophaga 14</td>
</tr>
<tr>
<td>Pitohui dichrous 300, 307–309, 321, 334</td>
</tr>
<tr>
<td>Pitohui kirhocephalus 307–309, 321, 322, 334</td>
</tr>
<tr>
<td>Pitta sordida 331</td>
</tr>
<tr>
<td>placens, Gennaeodryas 309, 323, 324, 336</td>
</tr>
<tr>
<td>placens, Charmosyna 329</td>
</tr>
<tr>
<td>Platalea alba 225</td>
</tr>
<tr>
<td>Platalea leucorodia 225, 237</td>
</tr>
<tr>
<td>Platysteira cyanec 237</td>
</tr>
<tr>
<td>plebejus, Phrygilus 13</td>
</tr>
<tr>
<td>plebejus, Turdoides 235</td>
</tr>
<tr>
<td>plaschnka, Oenanthe 237</td>
</tr>
<tr>
<td>plicatus, Rhyticeros 331</td>
</tr>
<tr>
<td>Placepasser superciliosus 167</td>
</tr>
<tr>
<td>Placeus baglafecth 234, 237</td>
</tr>
<tr>
<td>Placeus dichrocephalus 231</td>
</tr>
<tr>
<td>Placeus galbula 238</td>
</tr>
<tr>
<td>Placeus intermedius 238</td>
</tr>
<tr>
<td>Placeus melanoecephalus 231</td>
</tr>
<tr>
<td>Placeus nigerrimus 168</td>
</tr>
<tr>
<td>Placeus nigricollis 238</td>
</tr>
<tr>
<td>Placeus ocellaris 235</td>
</tr>
<tr>
<td>Placeus pelzeli 167</td>
</tr>
<tr>
<td>Placeus tricolor 168</td>
</tr>
<tr>
<td>Placeus vitellinus 234</td>
</tr>
<tr>
<td>plumatus, Prionops 235</td>
</tr>
<tr>
<td>plumbea, Polioptila 13</td>
</tr>
<tr>
<td>plumbea, Sporophila 47, 49, 50</td>
</tr>
<tr>
<td>plumbeus, Myioparus 235, 237</td>
</tr>
<tr>
<td>Pluvialis fulva 328</td>
</tr>
<tr>
<td>Podargus occelatus 330</td>
</tr>
<tr>
<td>Podargus papuensis 330</td>
</tr>
<tr>
<td>Podiceps nigricollis 225, 237</td>
</tr>
<tr>
<td>Podiceps Rolland 135</td>
</tr>
<tr>
<td>podobe, Cercotrichas 162</td>
</tr>
<tr>
<td>Poecidrochius hypoleuca 323, 324, 336</td>
</tr>
<tr>
<td>poecilocterna, Calendulauda 229, 233</td>
</tr>
<tr>
<td>Poecilotriccus fumifrons 36</td>
</tr>
<tr>
<td>Poecilotriccus latirostris 36</td>
</tr>
<tr>
<td>poensis, Neocossyphus 162</td>
</tr>
<tr>
<td>Pooecopta lugubris 167</td>
</tr>
<tr>
<td>Pogonia sulcirostris 131, 144</td>
</tr>
<tr>
<td>Pogoniulus chrysoscepus 159, 235, 237</td>
</tr>
<tr>
<td>Pogoniulus subsulphureus 159</td>
</tr>
<tr>
<td>Pogonornis dubius 131, 144</td>
</tr>
<tr>
<td>Poicephalus rufiventris 237</td>
</tr>
<tr>
<td>Polemaetus bellicosus 237</td>
</tr>
<tr>
<td>Polihierax semitorquatus 237</td>
</tr>
<tr>
<td>piocephaolus, Accipiter 327</td>
</tr>
<tr>
<td>piocephaolus, Phylloscopus 304, 308, 309, 336</td>
</tr>
<tr>
<td>polioleura, Fringillaria 234</td>
</tr>
<tr>
<td>pioleperus, Toxorhamphus 292</td>
</tr>
<tr>
<td>Polioptila plumbea 13</td>
</tr>
<tr>
<td>Polophilius variegatus 135, 136</td>
</tr>
<tr>
<td>Polyboroides typhus 155</td>
</tr>
<tr>
<td>polygrammus, Xanthotis 300, 301, 310, 332</td>
</tr>
<tr>
<td>polyosoma, Geranoaetus 10</td>
</tr>
<tr>
<td>Poospiza hispaniolensis 13</td>
</tr>
<tr>
<td>pratincola, Glareola 237</td>
</tr>
<tr>
<td>pretiosa, Claravis 10, 19</td>
</tr>
<tr>
<td>Primolius auricollis 26</td>
</tr>
<tr>
<td>Primolius maracana 22</td>
</tr>
<tr>
<td>Prinia rufifrons 237</td>
</tr>
<tr>
<td>Prinia somalica 234</td>
</tr>
<tr>
<td>Prinia subflava 234, 235, 237</td>
</tr>
<tr>
<td>Prionops plumatus 235</td>
</tr>
<tr>
<td>Probosciger aterrimus 329</td>
</tr>
<tr>
<td>Procellaria bailloni 149</td>
</tr>
<tr>
<td>Procellaria baroli 149</td>
</tr>
<tr>
<td>Procellaria diabola 147</td>
</tr>
<tr>
<td>Procellaria diabolicus 147</td>
</tr>
<tr>
<td>Procellaria leachii 147</td>
</tr>
<tr>
<td>Procellaria leucohoia 147</td>
</tr>
<tr>
<td>Procnias albus 289</td>
</tr>
<tr>
<td>Prodoticus insignis 159</td>
</tr>
<tr>
<td>Progne chalybea 13</td>
</tr>
<tr>
<td>Progne subis 22</td>
</tr>
<tr>
<td>Progne tapera 13</td>
</tr>
<tr>
<td>Prosopeia (tabuensis) tabuensis 128</td>
</tr>
<tr>
<td>Psalidoprocne nitens 161</td>
</tr>
<tr>
<td>Psaltripra, Astragalins 14</td>
</tr>
<tr>
<td>Pseudastur occidentalis 19</td>
</tr>
<tr>
<td>Pseudelaenia leucospodia 12</td>
</tr>
<tr>
<td>Pseudosfusca 329</td>
</tr>
<tr>
<td>Pseudibis papillosa 131, 137</td>
</tr>
<tr>
<td>Pseudobulweria aterrima 95, 270, 272</td>
</tr>
<tr>
<td>Pseudobulweria becki 95</td>
</tr>
<tr>
<td>Pseudobulweria macgillivrayi 95, 217</td>
</tr>
<tr>
<td>Pseudocolypteryx acutipennis 39</td>
</tr>
<tr>
<td>Pseudocolypteryx sp. 39</td>
</tr>
<tr>
<td>Pseudorectes ferrugineus 307–309, 321, 334</td>
</tr>
<tr>
<td>Pseudoscolopax incertus 307, 308</td>
</tr>
<tr>
<td>Pseudoscops clamator 10</td>
</tr>
<tr>
<td>Pseudoseisura cristata 46</td>
</tr>
<tr>
<td>Psilopogon armillaris 144</td>
</tr>
<tr>
<td>Psittaculirostris desmarestii 329</td>
</tr>
<tr>
<td>Psitaculus cruentatus 131, 145, 146</td>
</tr>
<tr>
<td>Psitaculus melanotus 131, 146</td>
</tr>
<tr>
<td>Psittichas fulgidus 296, 299, 301, 302</td>
</tr>
<tr>
<td>Pteristis capensis 134</td>
</tr>
<tr>
<td>Pteristis squamatus 156</td>
</tr>
<tr>
<td>Pterocles decoratus 237</td>
</tr>
<tr>
<td>Pterocles exustus 135, 156</td>
</tr>
<tr>
<td>Pterodroma 87, 243</td>
</tr>
<tr>
<td>Pterodroma alba 270, 271, 272–274</td>
</tr>
<tr>
<td>Pterodroma arminjoniana 270, 273, 274</td>
</tr>
<tr>
<td>Pterodroma axillaris 270, 272, 273, 274</td>
</tr>
</tbody>
</table>
Pterodroma cahow 270, 271, 272–274
Pterodroma cervicalis 270, 272–274
Pterodroma cookii 270, 272–274
Pterodroma externa 87, 270, 272–274
Pterodroma feae 270, 271, 272, 273, 274
Pterodroma hastata 147, 270, 271, 272–274
Pterodroma hypoleuca 93, 95

Pterodroma imberi sp. nov. 270, 272–275, 273
Pterodroma incerta 271, 273, 274
Pterodroma inexpectata 267, 270, 273, 274
Pterodroma jugablis 275
Pterodroma kurodai 275
Pterodroma lessonii 270, 271, 273, 274
Pterodroma longirostris 87, 270, 272
Pterodroma macroptera 270–272, 273, 274
Pterodroma madeira 270, 271, 272–274
Pterodroma magentae 267, 270, 272, 273, 274
Pterodroma mollis 267, 270, 272–274
Pterodroma neglecta 270, 272–274
Pterodroma nigripennis 267, 270, 272, 273, 274
Pterodroma phaeopygia 242
Pterodroma sandwichensis 270, 271, 273, 274
Pterodroma solandri 95, 270, 273, 274
Pterodroma sp. 267
Pterodroma ultima 267, 270, 272–274
Peruthius 345
Ptilinopus 309
Ptilinopus aurantiifrons 328
Ptilinopus bellus 292, 304, 329
Ptilinopus coronulatus 312, 329
Ptilinopus izonus 329
Ptilinopus magnificus 328
Ptilinopus nainus 329
Ptilinopus ornatus 299, 305, 307, 312, 319, 329
Ptilinopus perlatus 328
Ptilinopus pulchellus 329
Ptilinopus purpuratus 328
Ptilinopus superbus 129
Ptilinopus viridis 312, 329
Ptilopora erythropleura 305, 310, 315, 332
Ptilopsis leucotis 292, 329
Ptiloris magnificus 308, 309, 335
Ptilorrhao caerulescens 320, 333
Ptilorrhao castanotnosa 310, 317, 320, 333
Pytonopogene fuligula 237
Puffinus 223, 243
Puffinus assimilis 221
Puffinus bailloni 149, 216, 218, 220, 221, 223
Puffinus colstoni 223
Puffinus lherminieri 149
Puffinus nicolae 221
Puffinus persicus 348
Puffinus (persicus) temptator 216–223, 218–220
puffinus, Puffinus 242
Puffinus puffinus 242
Puffinus yelkouan 218
pulchella, Charadrius 345
pulchellus, Cinnyris 234
pulchellus, Ptilinopus 329
pulchellus, Vireolanius 238
pullarius, Agapornis 156
Pulatrix perspicillata 10
purpurascens, Vidua 224, 231, 232, 238
purpuratus, Trachylaemus 159
purpuratus, Trachyphonus 159
purneaus, Phoeniculus 226, 227
pusilla, Zapornia 131
pusillus, Ceix 331
pusillus, Merops 158
pusillus, Totonus 131, 141
Pycnopogon cinereus 301, 302
Pycnopogon stictocephalus 332
pygargus, Circus 237
pygmaeum, Oedistoma 333
Pygochelidon cyanoleuca 13
Pygoscelis adeliae 131, 137
pyrgita, Gymnoris 237
Pyrocephalus rubinus 12
pyrrhogaster, Chloropicus 160
pyrrhogaster, Thripis 160
pyrrhonota, Petrochelidon 40
pyrrhoptera, Brotilgeris 11
Pyrhrura amazonum 27
Pyrhrura cruentata 131, 145
Pyrhrura picta 27
Pyrhrura snethlageae 27
Ptihila melba 168, 238
Ptihila phoenicopiera 168
quadribraehys, Alcedo 158
quelea, Quelea 168, 238
Quelea quelea 168, 238
quoyi, Craticus 333
radjah, Tadorna 327
rainingdii, Phytotoma 13
Rallicula leucospila 300, 306, 310–312, 317, 327
ralloides, Ardea 237
Rallus bailloni 131
Rallus Bailloni 136
rara, Bostrychia 155
Recurvirostra novaehollandiae 148
Recurvirostra rubicollis 148
reevei, Turdus 13
regius, Cicinnurus 335
reichardii, Crithagra 233
reichardii, Serinus 233
reichenovi, Cryptospiza 168
reinwarddi, Turdoides 165
reinwardti, Reinwardtoena 328
reinwardti, Megapodius 237
Reinwardtoena reinwardti 328
Rhinopomastus aterrimus 237
Rhinopomastus castaneiceps 158
Rhipidura 307, 309
Rhipidura albolimba 304, 305, 308, 309, 335
Rhipidura atra 308, 335
Rhipidura hyperythra 308, 335
Rhipidura leucophrys 335
Rhipidura leucotrochus 335
Rhipidura maculipèctus 335
Rhipidura rufidorsa 308, 335
Riphipura rufiventris 308, 335
Rhipidura threnotroca 320, 335
rhodopareia, Lagonosticta 231, 238
Rhodosipins crusuentus 14
Rhyconostraupispis 44
Rhynchochus rufescens 146
Rhynchos spilochus 331
richardi, Anthis 154, 161
riparia, Riparia 237
Riparia riparia 237
roboreus, Megascops 10
robusta, Crateroscelis 304, 305, 310, 317, 318, 332
robustus, Melichneutes 159
Rollandia rolland 135
Rolland, Podiceps 135
rolland, Rollandia 135
roratus, Eclectus 93, 329
rosae, Trochilus 203, 205, 206
rosenbergii, Myzomela 293, 331
roseogrisea, Streptopelia 93
rubra, Eugerygone 300, 301, 335
rubina, Phacellodomus 33
rubinius, Pyrocephalus 12
rubra, Piranga 14
rubricata, Lagonosticta 169
rubriceps, Anaplectes 168, 238
rubricollis, Recurvirostra 148
rubronotata, Charmosyna 329
rupePELLI, GypS 225
rufa, Formicivora 33
rufa, Ninox 330
rufescens, Calandrella 154, 160
rufescens, ILLAdopsis 154, 165
rufescens, RHyNchotus 146
rufescens, Sericornis 306, 308, 310, 319, 333
rufescens, TInamus 146
ruficauDa, Galbula 82
ruficollis, Calidris 328
ruficollis, Chalcites 300, 313, 330
ruficollis, Gerygone 304, 333
ruficollis, OReopholus 10
ruficollis, Sporophila 50
rufidorsa, Rhipidura 308, 335
rufoaxillaris, Molothrus 53
rufocinnamomea, Mirafra 160
rufocollaris, Petrochelidon 13
rufulus, Cuculus 136
rupestris, Chordeiles 29
rustica, Hirundo 324, 336
rutillus, Amazilia 203
rutillus, Falco 148
Rynchospiza stolzmanni 14
sabina, Adelomyia 204
sabinae, Metallura 203
sabinae, Trochilus 195, 200, 203, 204
sabini, Larus 148
sabini, Xema 148
sacra, Alcedo 109, 114, 115
sacra, Egretta 327
Sakesphorus luctuosus 33
Salpornis salvadori 235
Salator striatpectus 14
salvadorii, Onychognathus 237
Salvadorina waigiuensis 301, 302
salvadori, Salpornis 235
salvini, Tumbesia 12
sanctaemariae, Cymbilaimus 33
sanctus, Todiramphus 109, 114, 128, 331
sandwichensis, Pterodroma 270, 271, 273, 274
sanlucasensis subsp. nov., Basileuterus tristriatus 84
Sappho sparganurus 204
Sarcoramphus papa 9, 15
Sarkidiornis melanotos 9
Sasia africana 159
saturata, Euphonia 14
saxatilis, Monticola 162
Sayornis nigricans 12
Scardafella 189
Schiffrinus major 40
schisticeps, Edolisoma 308, 320, 334
schlegeli, Pachycephala 308, 321, 334
sclateri, Knipolegus 37
sclateri, Pheugopedius 13, 18
sclateri, Picumnus 11, 15, 19
Scolopax lamoti 149
Scopus umbretta 237
Scotopelia bouvieri 157
Scotopelia peli 157
Scotopelia ussheri 157
Sclythrops novaehollandiae 330
seebohmi, Atlapetes 14, 18
Seleucidis melanocecus 335
semicerineus, Hylophilus 41
serimrufus, Myiarchus 12, 17
semitorquatrus, Microsura 11
semitorquatrus, Polihierax 237
senegalia, Lagonosticta 169
senegaliensis, Burhinus 225
senegaliensis, Chalcomitra 166, 234, 237
senegaliensis, Dryoscopus 166
senegaliensis, Halcyon 237
senegaliensis, Otus 157, 237
senegaliensis, Zosterops 230, 237
senegalius, Tchagra 235
Sericornis 307, 309
Sericornis arfakianus 300, 301, 310, 319, 333
Sericornis beccarianus 306, 308–310, 318, 319, 332
Sericornis noviulvusy 300, 301, 306, 312, 319, 332
Sericornis perspicillatus 319
Sericornis rufescens 306, 308, 310, 319, 333
Sericornis spilodera 299, 309, 318, 332
Sericornis virgatus 309, 319
Sericornis 302
Sericulus aureus 296, 299, 301, 331
Serinus reichardi 233
Setophaga pharetra 345
Setophaga pitiayumi 14
shelleyi, Lamprotornis 234
sibilatrix, Ardea 131, 137
sibilatrix, Syrigma 21, 25, 131, 137
Sicalis citrina 46
Sicalis colombiana 46
Sicalis flaveola 13, 21, 46
Sicalis taczanowskii 13
siemiradzkii, Sporagra 14, 18
simoni, Synallaxis 32, 33
simplex, Adelomyia 207
simplex, Adelomyia 195, 200, 205, 207, 210
simplex, Eriopus 207
simplex, Geoffroyus 330
simplex, Pachycephala 308, 334
simplex, Sporophila 14
Sipodotus wallaci 331
Sirystes albicinereus 209
Scientific Names Index

Sittasomus griseicapillus 12
smithii, Hirundo 237
snetilaegeae, Pyrrhura 27
solandri, Pterodroma 95, 270, 273, 274
solitarius, Buteogallus 10
solitarius, Ceyx 331
solitarius, Cuculus 226
somalensis, Cursorius 235
somaliensis, Phoeniculus 227
somalensis, Cursorius 235
somalica, Prinia 234
somaliensis, Phoeniculus 227
sordida, Pitta 331
sordidulus, Contopus 12, 17
soror, Pachycephala 298, 308–310, 321, 334
souleyetii, Lepidocolaptes 12, 19
sparganurus, Sappho 204
sparsa, Anas 237
spatula, Falco 11
Spatula clypeata 237
speculigera, Conothraupis 13, 18, 19, 44
Speculipastor bicolor 231
Spermophaga haematina 168
spilodera, Sericornis 299, 309, 318, 332
Spiloptila clamans 157
spinicaudus, Chaetura 29
spinicusus, Vanellus 237
Spizaetus africanus 155
spodiurus, Pachyramphus 13, 17
Sporagra magellanica 14, 18
Sporagra siemiradzkii 47
Sporagra caerulescens 49
Sporagra castaneiventris 47
Sporagra cinnamomea 22, 49, 51
Sporagra collaris 21, 47, 49
Sporagra convina 14
Sporagra frontalis 43
Sporagra hypochroma 21, 50
Sporagra hypoxantha 51
Sporagra leucoptera 49
Sporagra luctuosa 14, 18
Sporagra maximiliani 52
Sporagra melanoaster 51
Sporagra melanopectus 21
Sporagra nigricollis 49
Sporagra (Oryzoborus) maximiliani 51
Sporagra palustris 22, 49–51
Sporagra peruviana 13
Sporagra pileata 47, 48
Sporagra plumbea 47, 49, 50
Sporagra ruficollis 50
Sporagra simplex 14
Sporagra telasco 14
sp., Talegalla 311
squamatus, Pternisits 156
Stelgidillas gracillostris 162
Stelgidopteryx ruficollis 13
stephani, Chalcophaps 328
Stercorarius antarcticus 190
Stera affinis 142
Stera bengalensis 142
Stera dougallii 328
Stera hirundo 328
Stera sumatrana 218, 328
Sternula albifrons 328
stictocephalus, Pycnopygius 332
stictothorax, Synallaxis 12
stolidus, Anous 218, 348
stolzmanni, Rynchospiza 14
stolzmanni, Tachycineta 13
streptans, Phyllastrephus 237
Streptopelia capicola 235
Streptopelia decipiens 156
Streptopelia hypopyrrha 156
Streptopelia lugens 237
Streptopelia roseogrisea 156
Streptopocoez zonaris 11
stresemanni, Zavattariornis 231, 237
stria, Butorides 9, 327
stria, Hypocnemis 34
stria, Muscicapa 234, 237
striatpectus, Crithagra 233, 238
striatpectus, Saltator 14
striativentris, Melanocharis 300, 301, 319, 320, 333
strigolus, Crypturellus 23
striola, Crithagra 234
Sturnella bellica 14
Sturnella militaris 53, 54
Sturnella supercilialis 21, 53, 54
Sturnus vulgaris 61, 185
subbuteo, Falco 237
subcrista, Aviceda 327
subflava, Inezia 31, 35
subflava, Prinia 234, 235, 237
subis, Pogonia 22
subplacens, Myiopagis 12
subrufescens, Momotus 11
subsulphureus, Pogoniulus 159
Suiriri affinis 35
suiriri, Suiriri 35
Suiriri suiriri 35
Sula dactylatra 218
Sula leucogaster 327
sulcirostris, Crotophaga 10
sulcirostris, Phalacrocorax 327
sulcirostris, Pogonia 131, 144
sulphereicus, Chlorophoneus 237
sulphuratus, Pogonia 17
sulphurescens, Tylomolgyus 12
sumatrana, Ardea 327
sumatrana, Sterna 218, 328
superbus, Cinnyris 166
superbus, Ptilinopus 329
superciliaris, Burhinus 10
superciliaris, Cantorhinchus 13, 18
superciliaris, Penelope 24
superciliaris, Sturnella 21, 53, 54
superciliosa, Anas 311, 327
supercilius, Centropus 237
supercilius, Plocepasser 167
swainsonii, Gampsonyx 9
Sylvia boehmi 237
Sylvia borbonica 338
Sylvia hortensis 229
Sylvicola flavicollis 345
Sylvietta brachyura 234
Sylvietta whyttii 234, 237
Syma megarhyncha 237
Syma torotoro 331
Symposiachrus axillaris 304, 308, 324, 334
Symposiachrus guttolata 308, 334
Symposiachrus manadensis 334
Symposiachrus rubiensis 334
Symposiachrus 307
Synallaxis albilora 32
Synallaxis simoni 32, 33
Synallaxis stictothorax 12
Synallaxis titisy 12
Syndactyla ruficollis 12, 19
Syrigma sibilatrix 21, 25, 131, 137
Systellura longirostris 278–280, 278, 279
szalayi, Oriolus 334
tabuensis, Prosopeia (tabuensis) 128
taczanowskii, Sicalis 13
tahapisi, Fringillaria 235
tahitica, Hirundo 324, 336	Talegalla cuvieri 310, 311
Talegalla fuscirostris 310, 311
Talegalla jobiensis 311
tahama, Nymasticta 30
Tatonoica nasicornis 308, 334
tenagia, Pseudatheres 14
temminckii, Sicalis 13
tobataensy, Progne 13
tenagia, Pseudatheres 14
temminckii, Sicalis 13
Tafara nealia 30
Tauraco leucotis 233
Tchagra jamesi 230, 237
Tchagra senegalus 235
telasco, Sporophila 14
tenia, Puffinus (persicus) 216–223, 218–220
tenebricosa, Tyto 330
Todiramphus sanctus 109, 114, 128, 331
Todiramphus tutus 108–120, 112, 113, 121–130
Todiramphus veneratus 108, 112, 121, 128
Todirostrum cinereum 12
Todirostrum maculated 31, 36
Tolmomyias sulphurescens 12
tombacca, Galbula 80–82
tororoto, Syma 331
torquata, Megaceryle 11
torquata, Melanopareia 35
torquatus, Celeus 31, 32
torquatus, Melidectes 301, 302
Totanus guttatus 131, 141
Totanus melanopygius 131, 140, 141
Totanus melanotus 141
Totanus pusillus 131, 141
Touit huerti 27
Touit melanotus 131, 146
Toxorhamphus novaeguineae 333
Toxorhamphus poliopterus 292
Trachyphonus dumningii 159
Trachyphonus erythrocephalus 237
Trachyphonus margaritatus 159
Trachyphonus purpuratus 159
transfasciatus, Crypturellus 8, 9
Tregellasia leucops 299, 306, 324, 336
Treron calvus 156
Treron wallisii 237
Trichoeresia haematodans 329
Tricholaema diademata 237
trichroa, Erythrura 304, 325, 336
tricholais, Charadrius 237
tricolore, Lycops 22
Tringa flavipes 10, 131, 141
Tringa melanoleuca 10
Tringa minutilla 140
Tringa nebularia 328
Tringa ochropus 237
Tringa sp. 328
tristis, Acrocephalus 61–68, 185–187
tristis, Corvus 335
tristrami, Hydrobates 242
tristriatus, Hydrobates 242
tristriatus, Basileuterus 84–86
trivialis, Anthus 234, 237
Trochilus antoniae 203
Trochilus antoniae 203
Trochilus francisci 203, 206
Trochilus livingstonei 200, 201, 202
Trochilus rosae 203, 205, 206
Trochilus sabini 195, 200, 203, 204
Trochilus viridipilus 203
Troglodytes alchemilla 231
Troglodytes aedon 13
Troglydites estrilis 231
Troglydites aedon 13
Troglydites estrilis 231
Trogon melanurus 11
tropic, Fregattta 242
tropic, Fregattta 240, 243–245
tuberculifer, Myiarchus 13
Tumbuzia salvini 12
Turdoides plebejus 235
Scientific Names Index

Bull. B.O.C. 2014 133(4)

Turdoides reinwardtii 165
Turdus borbonicus 338
Turdus pelios 237
Turdus reevei 13
Turdus tephronotus 237
Turtur afer 156, 235
Turtur chalcospilos 237
tuta, Alcedo 108, 109
tutus, Todiramphus 108–120, 112, 113, 121–130
typus, Polyboroides 155
Tyrannus melancholicus 12
Tyrannus niveigularis 12, 19
Tyto alba 10, 237
Tyto tenebrosa 330
ulietanus, Cyanoramphus 129
ultima, Pterodroma 267, 270, 272–274
ultracervinus, Adelomyia 208
ultramarina, Hypochera 232
umbretta, Scopus 232
undulatus, Melopsittacus 93, 94
undulatus, Zebrilus 25
unicinctus, Parabuteo 10
Upupa epops 237
Uraeginthus bengalus 169, 234, 238
urbicum, Delichon 237
Uria francsii 131, 142, 143, 148
Uria lomvia 131, 142, 143
Urotriorchis macrourus 155
urubitinga, Buteogallus 9
ussheri, Muscicapina 154, 164
ussheri, Scotopelia 157
ustulatus, Catharus 13
Vanellus spinosus 237
vanikorensis, Aerodramus 314, 330
variegatus, Corydonix 136
variegatus, Indicator 227
variegatus, Merops 138
variegatus, Polophilus 135, 136
variolosus, Cacomantis 330
venerata, Alcedo 108, 109, 114
veneratus, Halcyon 124
veneratus, Todiramphus 108, 112, 121, 128
Veniliornis callonotus 11, 15, 19
venustus, Cinnyris 237
vermiculatus, Burhinus 225, 258
Verreauxia africana 154, 159
verreauxii, Aquila 237
verreauxi, Leptotila 10, 15
versicolor, Gavicalis 309, 332
vexillarius, Macrodipteryx 247
Vidua camerunensis 232
Vidua chalybeata 169, 231, 232, 238
Vidua larvatica 224, 232, 238
Vidua paradisaea 238
Vidua purpurascens 224, 231, 232, 238
Vidua wilsoni 169, 224, 232, 238
violacea, Nyctanassa 131, 138
Vireo flavifrons 345, 346
Vireolanthus pulchellus 345
Vireo leucopryphs 13
Vireo olivaceus 13
Vireo osburni 342–347, 344
Vireosylvia 345
virgatus, Sericornis 309, 319
virginianus, Bubo 10
viridipallens, Lampornis 203
viridipallens, Trochilus 203
viridis, Ptilinopus 312, 329
vitellinus, Ploceus 234
vitiensis, Columba 328
vocifer, Ædicnemus 131, 140
vocifer, Haliaeetus 237
vociferus, Charadrius 10
Volatinia jacarina 13, 47
vulgaris, Sturnus 61, 185
Vultur grhypus 9, 15
waalia, Treron 237
waiguensis, Salvadorina 301, 302
wallacii, Aegotheles 301, 302, 310, 314
wallacii, Sipodotus 331
warszewiczi, Dives 14
watkinsi, Grallaria 12, 15
whyttii, Sylvietta 234, 237
wilhelminae, Charmosyna 302
wilsoni, Vidua 169, 224, 232, 238
xantholaema, Crithagra 233
xanthophus, Chloropus 160
xanthophus, Thriptes 160
xanthonura, Columba 146
xanthops, Alipiopsitta 22, 28
Xanthotis flaviventer 332
Xanthotis polygrammus 300, 301, 310, 332
Xema sabini 148
Xenopsariss albinucha 39
yelkouan, Puffinus 218
Zapornia pusilla 131
zarumae, Thamnophilus 19
Zavattariornis stresemanni 231, 237
zealandicus, Cyanoramphus 129
Zebrilus undulatus 25
Zenaida auriculata 10
Zenaida melodia 10
zoeeae, Ducula 329
zonaris, Streptoprocne 11
Zonotrichia capensis 14
Zoothera heinei 300, 301, 310, 336
Zosterops abyssinicus 230, 237
Zosterops atrifrons 324, 336
Zosterops borbonicus 337, 338, 339, 340
Zosterops fuscicapilla 324, 336
Zosterops novaeguineae 300, 301, 306, 310, 324, 336
Zosterops senegalensis 230, 237
Subscriptions were due for renewal on 1 January 2015

PLEASE NOTE THAT THE SUBSCRIPTION RATE IS £25 PER PERSON.

All paid-up members receive (postage free) four issues of the *Bulletin* (including index).

Membership correspondence and applications for membership, changes of address and all other membership related items should be addressed to the BOC Office (above). No registered items should be sent to the P.O. Box. Contact BOC Office for direct mail of such items. For general Club correspondence see below.

INSTITUTIONAL SUBSCRIBERS & APPLICATIONS FOR BACK NUMBERS OR OTHER CLUB PUBLICATIONS

The *Bulletin*, together with annual index, may be purchased (postage free) by Institutional Subscribers, on payment of an annual subscription of £50 to the BOC Office (above) or via the BOC website (www.boc-online.org). Back issues of Vols. 129–134 of the *Bulletin*, for the years 2009–14, are available from the BOC Office (above). All volumes up to and including Vol. 128 already are, or should shortly be, freely available on the Biodiversity Heritage Library website at www.biodiversitylibrary.org/bibliography/46639. BOC Occasional Publications and other BOC publications are available from the BOC Office or online from the BOC website (www.boc-online.org).

Ideas for future publications should be referred direct to: Dr D. R. Wells, Commissioning Editor, c/o BOC Office, P.O. Box 417, Peterborough, PE7 3FX, UK.

PAYMENTS

All amounts quoted are net, should be paid in £ Sterling and sent to the BOC Office (above). Other currencies are not accepted. Other currency users can pay by credit card from which the Sterling amount will be deducted and the amount in your local currency will be indicated on your card statement. All cheques or drafts should be made payable to British Ornithologists’ Club. Direct bank transfers can be made to Barclays Bank PLC, Leicester, LE87 2BB. Sort code 20-00-87. Account no: 10211540. SWIFT BIC code: BARCGB22. IBAN no: GB62 BARC 2000 8710 2115 40, with confirmation to the BOC Office (above).

CLUB CORRESPONDENCE

Correspondence on all general Club matters should be addressed to the Hon. Secretary, Dr R. P. (Robert) Pryś-Jones, Bird Group, Department of Zoology, Natural History Museum, Akeman Street, Tring HP23 6AP, UK (e-mail: r.prys-jones@nhm.ac.uk).

See inside front cover for details of Club meetings.

COMMITTEE

Dr R. P. Pryś-Jones (Hon. Secretary) (2011) A. Simmons (2015)
R. W. Malin (Hon. Treasurer) (2014)

Ex-officio members
Hon. Editor: G. M. Kirwan (1 January 2004)
Administration Manager: S. P. Dudley (2005)
Commissioning Editor: Dr D. R. Wells (2009)

Registered Charity No. 279583
CONTENTS

<table>
<thead>
<tr>
<th>Club Announcements</th>
<th>281</th>
</tr>
</thead>
<tbody>
<tr>
<td>INGELS, J., DECHELLE, M., PELLETIER, V., DEVILLE, T., RIBOT, J. H. & CLAESSENS, O. Status and distribution of Golden-rumped Euphonia Euphonia cyanocephala on the Guiana Shield, South America</td>
<td>284</td>
</tr>
<tr>
<td>DIAMOND, J. & BISHOP, K. D. Avifaunas of the Kumawa and Fakfak Mountains, Indonesian New Guinea</td>
<td>292</td>
</tr>
<tr>
<td>DICKINSON, E. C. & CHEKE, A. S. The authorship of the names of two birds from Réunion</td>
<td>337</td>
</tr>
<tr>
<td>LEVY, C. An early description and illustration of Blue Mountain Vireo Vireo osburni</td>
<td>342</td>
</tr>
<tr>
<td>SHIRIHAI, H. & BRETAGNOLLE, V. Bulweria petrels off the Comoros, south-west Indian Ocean</td>
<td>348</td>
</tr>
<tr>
<td>DOWSETT, R. J. & DOWSETT-LEMAIRE, F. The status of the name occidentalis Chappuis' for the Dusky Long-tailed Cuckoo Cercococcyx mechowi</td>
<td>352</td>
</tr>
<tr>
<td>Index for Volume 135 (2015)</td>
<td>354</td>
</tr>
</tbody>
</table>

EDITORIAL BOARD

Bruce M. Beehler, Murray Bruce, R. T. Chesser, Edward C. Dickinson, Françoise Dowsett-Lemaire, Steven M. S. Gregory, José Fernando Pacheco, Robert B. Payne, Pamela C. Rasmussen, Cees Roselaar, Thomas S. Schulenberg, Lars Svensson

Registered Charity No. 279583

www.boc-online.org